tính S=1+2+3+4+.....+n. Với n là số tự nhiên lớn hơn 1
cmr với mọi số tự nhiên n lớn hơn hoặc bằng 2 thì S=3/4+8/9+15/16+...+n2-1/n ko thể là 1 số nguyên
\(A=1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...+n}\)
\(=1+\dfrac{1}{2\cdot\dfrac{3}{2}}+\dfrac{1}{3\cdot\dfrac{4}{2}}+...+\dfrac{1}{\dfrac{n\left(n+1\right)}{2}}\)
\(=1+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{n\left(n+1\right)}\)
\(=1+2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)
\(=2-\dfrac{2}{n+1}\) ko là số tự nhiên
chứng minh rằng với mọn số tự nhiên n lớn hơn hoặc = 2 thì
S= 3/4 + 8/9 + 15/16 +...+ n^2 - 1/ n^2 KHÔNG THỂ LÀ 1SỐ NGUYÊN
Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo nhé!
\(S=\frac{3}{4}+\frac{8}{9}+...+\frac{n^2-1}{n^2}\)
\(=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+...+\left(1-\frac{1}{n^2}\right)\)
\(=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)< n-1\)(1)
+ Vì \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(\frac{1}{2^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}\)
Nên S > n - 1 - ( 1 - 1/n) = n - 2 + 1/n > n - 2 ( vì 1/n > 0) (2)
Từ (1),(2) => n - 2 < S < n - 1 mà n \(\in\)N, n \(\ge\)2 => đpcm
bài 1 : cho n là số tự nhiên lớn hơn 1 . Chứng minh rằng : n4+4n là hợp số
bài 2 : tìm số tự nhiên n sao cho 3n+55 là số chính phương
bài 3 : cho a+1 và 2a+1 ( n ( N ) đồng thời là hai số chính phương . Chứng minh rằng a chia hết cho 24
Rút gọn dãy tính, với n là số tự nhiên lớn hơn 1:
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)
Xét hạng tổng quát:
\(\frac{1}{\sqrt{n-1}+\sqrt{n}}=\frac{1}{\sqrt{n}+\sqrt{n-1}}=\frac{\sqrt{n}-\sqrt{n-1}}{n-n+1}=\sqrt{n}-\sqrt{n-1}\)
Áp dụng vào bài, ta có:
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)
\(=\left(\sqrt{2}-1\right)+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{4}-\sqrt{3}\right)+\left(\sqrt{n}-\sqrt{n-1}\right)\)
\(=\sqrt{n}-1\)
CMR: (2!/3!+2!/4!+2!/5!+....+2!/n!)<1 với n là số tự nhiên lớn hơn hoặc bằng 3
chứng minh rằng tổng sau không phải là số tự nhiên 1/2+1/3+1/4+.....+1/n (n là số tự nhiên lớn hơn hoặc bằng 2).
Chứng minh rằng với mọi số tự nhiên n lớn hơn hoặc bằng 2 thì tổng:
\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)không thể là một số nguyên
Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo nhé!
Đề bài thiếu n là số tự nhiên nhé
_ Với \(n=0\Rightarrow S\left(0\right)=1^0+2^0+3^0+4^0=4⋮4.\)
_Với \(n=1\Rightarrow S\left(1\right)=1^1+2^1+3^1+4^1=10\equiv2\left(mod4\right)\)
_Vơi \(n\ge2\Rightarrow\hept{\begin{cases}1^n\equiv1\left(mod4\right)\\2^n⋮4\\4^n⋮4\end{cases}}\)
+ Với n lẻ, ta có: \(3\equiv-1\left(mod4\right)\Leftrightarrow3^n\equiv\left(-1\right)^n\equiv-1\left(mod4\right)\)(vì n lẻ)
\(\Rightarrow S\left(n\right)\equiv1+0-1+0\equiv0\left(mod4\right)\)
+ Với n chẵn, ta có \(3\equiv-1\left(mod4\right)\Leftrightarrow3^n\equiv\left(-1\right)^n\equiv1\left(mod4\right)\)(vì n chẵn)
\(\Rightarrow S\left(n\right)\equiv1+0+1+0\equiv2\left(mod4\right)\)
Vậy: -với n=0 và n là số tự nhiên le lớn hơn 1 thì \(S\left(n\right)⋮4\)
-vơi n=1 và n là số tự nhiên chẵn lớn hơn 1 thì \(S\left(n\right)\equiv2\left(mod4\right)\)