.Cho 2023 số tự nhiên bất kì: a1;a2;a3;...;a2023 . Chứng minh rằng tồn tại một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 2023.
Cho 10 số tự nhiên bất kì .a1,a2,....,a10.Chứng minh rằng thế nào cũng có 1 hoặc 1 tổng số các số tự nhiên liên tiếp nhau trong dãy chia hết cho 10
Bg: Đặt S1 = a1; S2 = a1+ a2; S3 = a1+a2+a3 ... ;S10 = a1+a2+...+a10. Xét 10 số S1,S2, ... S10 ta có 2 trường hợp như sau :
+) Nếu có 1 số Gk nào đó tận cg = 0 ( Sk = a1+a2 + ... ak, k từ 1 - 10) => tổng của k số a1,a2, ... ak chia hết cho 10 ( đpcm )
+) Nếu k có số nào trong 10 số S1, S2, ... S10 tận cg là 0 => chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cg giống nhau. Ta gọi 2 số đó là : Sm và Mn (1= <m<n=< 10 ) .... Sm = a1+a2 + ... a(m); Mn = a1+a2+ ...a(m)+ a(m1)+ a(m2) + ... + a(n ) .
=> Sn - Sm = a(m+1)+ a(m+2) + ....+ a(n) tận cg là 0 => Tổng của n-m số a( m+1),a(m+2), ..., a(n) chia hết cho 10 ( đpcm ) .
Cho a1 đến a10 là 10 số tự nhiên liên tiếp bất kì >1.
Cm : 1/a1^2 +1/a2^2 +...+1/a10^2 <1
cho 1 dãy số gồm 10 số tự nhiên bất kì a1,a2,a3,...,a10.chứng minh rằng có 1 tổng hoặc 1 số trên chia hết cho 10.
cho 10 số tự nhiên bất kì a1;a2;...;a10.Cmr trong 10 số đó có 1 hoặc nhiều số liên tiếp nhau tạo thành 1 tổng chia hết cho 10.
Đặt S1=A1
s2=A1+A2
..........
s10=A1+A2+...+A10
+Nếu 1 trong 10 tổng tre cha hêt cho 10 thì có dpcm
+Nếu ko có tổng nào chia hết cho 10 thì luôn tồn tại 2 tỏng chia 10 cùn só dư khi chia 10
suy ra Hiêu của 2 tỏng đó chia hết cho 10 (đó là tổng của 1 hay 1 só đo trong dãy
cho 7 số tự nhiên bất kì a1;a2;a3;...;a7.chứng minh rằng luôn chọn được 4 số từ những số trên để tổng của chúng chia hết cho 4
Cho 10 số tự nhiên bất kì: a1, a2,..., a10. CMR thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy chia hết cho 10
Cho 10 số tự nhiên bất kì :a1;a2;a3;...;a10.Chứng minh rằng thế nào cũng có một số hoặc tổng các số liên tiếp nhau trong dãy trên chia hết cho 10
Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp :
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm)
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10)
...Sm = a1+a2+ ... + a(m)
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n)
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm)
Lập dãy số .
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3
...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh.
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau:
Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư ∈ { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có
ít nhất 2 số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) ⇒ ĐPCM.
Cho 10 số tự nhiên bất kì :a1;a2;a3;...;a10.Chứng minh rằng thế nào cũng có một số hoặc tổng các số liên tiếp nhau trong dãy trên chia hết cho 10
Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp :
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm)
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10)
...Sm = a1+a2+ ... + a(m)
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n)
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm)
Tick nha
tick nhé:http://olm.vn/hoi-dap/question/61032.html
Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp :
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm)
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10)
...Sm = a1+a2+ ... + a(m)
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n)
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm)
* đi
cho 10 số tự nhiên bất kì: a1, a2, a3,..., a10.Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiép nhau trong dãy trên chia hết cho 10
Đặt S1 = a1 ; S2 = a1 + a2 ; S3 = a1 + a2 + a3 ; ... ; S10 = a1 + a2 + a3 + ... + a10
Xét 10 số S1 ; S2 ; S3 ; ... ; S10 ta có 2 trường hợp :
+) Nếu có một số Sk nào đó tận cùng bằng 0 (Sk = a1 + a2 + ... + ak, k từ 1 đến 10) ⇒ tổng của k số a1, a2 , ..., ak chia hết cho 10 (đpcm)
+) Nếu không có số nào trong số S1 ; S2 ; S3 ; ... ; S10 tận cùng bằng 0 ⇒ chắc chắn phải có ít nhất 2 số nào đó tận cùng giống nhau. Ta gọi 2 số đó là Sm và Sn (1 ≤ m < n>
Sm = a1 + a2 + a3 + ... + a(m)
Sn = a1 + a2 + a3 + ... +a(m) + a(m+1) + a(m+2) + ... + a(n)
⇒ Sn - Sm = a(m+1) + a(m+2) + ... +a(n) tận cùng bằng 0
⇒ Tổng của n - m số a(m+1) ; a(m+2) ; ... a(n) chia hết cho 10 (đpcm)
Vậy trong 10 số tự nhiên bất kì tồn tại 1 số hoặc tổng 1 số liên tiếp nhau trong dãy chia hết cho 10