Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quang Hải
Xem chi tiết
Không Cho Đâu
Xem chi tiết
Không Cho Đâu
Xem chi tiết
Đỗ Thị Quỳnh Như
Xem chi tiết
Lê Hồ Trọng Tín
30 tháng 10 2019 lúc 19:40

Bài 1

A A A B B B C C C H H H M M M D D D I I I a/Xét tứ giác BHCD có M đồng thời là trung điểm của cả HD và BC 

Do đó BHCD là hình bình hành \(\Rightarrow BH//CD,CH//BD\)

Mặt khác vì ta có H là trực tâm của tam giác ABC nên \(BH\perp AC,CH\perp AB\)

Suy ra \(BD\perp AB,CD\perp AC\Rightarrow\Delta ABD,\Delta ACD\)là tam giác vuông 

b/Xét \(\Delta ABD,\Delta ACD:\widehat{ABD}=\widehat{ACD}=90^0\);I là trung điểm của cạnh huyền chung AD

Suy ra \(IA=IB=IC=ID\)

Khách vãng lai đã xóa
Lê Hồ Trọng Tín
30 tháng 10 2019 lúc 19:57

Bài 2 α = 60° α = 60° α = 60° A A A B B B C C C D D D E E E a/Vì AD=CD(gt) nên D nằm trên trung trực của đoạn AC suy ra \(\widehat{DAC}=\widehat{ECA}=90^0-60^0=30^0\)

Suy ra \(\widehat{BAD}=90^0+\widehat{DAC}=120^0\)

b/Trước hết ta thấy ABCD đã là hình thang,nên ta đi chứng minh \(\widehat{BCD}=\widehat{ABC}=60^0\)

Ta có \(\widehat{BCD}=\widehat{DCA}+\widehat{ACB}=\widehat{DAC}+30^0=30^0+30^0=60^0\)

Vậy ABCD là hình thang cân

c/Ta có \(\Delta BCE:AE=BE,\widehat{ABE}=60^0\Rightarrow AE=BE=AB\)

\(\widehat{ADE}=\frac{1}{2}.\widehat{ADC}=60^0;\widehat{BAD}=120^0=\widehat{BED}\)

Suy ra ABED là hình bình hành 

Mà ta còn có AB=EB 

Vậy ABED là hình thoi

Khách vãng lai đã xóa
Lê Hồ Trọng Tín
30 tháng 10 2019 lúc 20:15

Bài 3 A A A B B B C C C D D D E E E F F F I I I K K K a/Xét \(\Delta ADE\)và \(\Delta ABF\)có \(AD=AB;DE=BF;\widehat{ADE}=\widehat{ABF}=90^0\)

\(\Rightarrow\Delta ADE=\Delta ABF\left(c.g.c\right)\Rightarrow AE=AF,\widehat{DAE}=\widehat{BAF}\Rightarrow DPCM\)

b/Dùng định lý Menelaus cho tam giác ECF:\(\overline{I;B;D}\Leftrightarrow\frac{DC}{DE}.\frac{BF}{BC}.\frac{IE}{IF}=1\Leftrightarrow\frac{DC}{DE}.\frac{BF}{BC}=1\left(I\right)\)

Ta thấy rõ (I) đúng do BC=DC;BF=DE

Vậy I thuộc BD

c/(mình thấy bình thường mà có cần kẻ gì)

Vì K và A đối xứng qua I mà I là trung điểm EF nên được AEFK là hình bình hành

Mà \(\widehat{EAF}=90^0;AE=AF\left(cmt\right)\)

Vậy AEFK là hình vuông

Khách vãng lai đã xóa
Trương Vân Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 8 2022 lúc 13:14

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

yunn min
Xem chi tiết
Tôn Hà Vy
Xem chi tiết
Namikaze Minato
2 tháng 5 2016 lúc 7:58

dài thế bạn.

đọc xong  đề bài mình ngủ luôn

Improve my English
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 12:16

a) Xét ΔADH vuông tại H và ΔBCK vuông tại K có 

AD=BC(ABCD là hình thang cân)

\(\widehat{D}=\widehat{C}\)(ABCD là hình thang cân)

Do đó: ΔADH=ΔBCK(cạnh huyền-góc nhọn)

Suy ra: DH=CK(hai cạnh tương ứng)

b) Xét ΔAHC vuông tại H và ΔBKD vuông tại K có 

AC=BD(ABCD là hình thang cân)

AH=BK(ΔADH=ΔBCK)

Do đó: ΔAHC=ΔBKD(Cạnh huyền-cạnh góc vuông)

Duyên Lương
Xem chi tiết
Nguyễn Thùy Linh 195d
12 tháng 11 2017 lúc 20:06

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

Nguyễn Thị Mai Linh
22 tháng 11 2017 lúc 17:24

Câu 4: Cho tam giác ABC vuông tại A. Biết AB=5cm, BC=13cm. Gọi H, K lần Lượt là trung điểm của AB và BC. Tính độ dài HK

giúp mình nhoa!!