Bài 5, Cho hình thang cân ABCD có đáy bé BC và góc BAD = 60 độ. Trên tia DC lấy điểm I sao cho ID = BC a). Gọi AB cắt CD tại O, Chứng minh tam giác BOD = tam giác IDA b) Gọi AI cắt BD tại H. Tính số đo góc AHD
cho hình thang cân ABCD có đáy là AB,CD .Kẻ AH vuông góc với DC tại H ,BK vuông góc với DC tại K
a)Cm:DH=Ck
b)Cm:tam giác AHC=tam giác BKD
c)Đường thẳng DA,Bc cắt nhau tại M.Chứng minh tam giác MAC=tam giác MBD
d)Gọi AC giao BD tại O I là trung điểm Dc ,Cm chưng minh M,O,I thẳng hàng
Bài 1 : Cho tam giác nhọn ABC , gọi H là trực tâm tam giác , M là trung điểm BC . Gọi D là điểm đối xứng của H qua M .
a ) Chứng minhcác tam giác ABD và ACD vuông
b ) Gọi I là trung điểm AD . Chứng minh IA = IB =IC = ID
Bài 2 : Cho tam giác ABC vuông tại A có góc B bằng 60 độ , kẻ Ax song song BC . Trên tia Ax lấy điểm D sao cho : AD =DC
a ) Tính các góc BAD và góc DAC
b ) Chứng minh tứ giác ABCD là hình thang cân
c ) Gọi E là trung điểm BC . Chứng minh ADEB là hình thoi
Bài 3 : Cho hình vuông ABCD , E là trung điểm trên cạnh DC , F là điểm trên tia đối tia BC sao cho BF = DE .
a) Cminh : tam giác AEF vuông cân
b ) Gọi I là trung điểm EF . Chứng minh I thuộc BD
c ) Lấy K đối xứng A qua I . Chứng minh AEFK là hình vuông ( Hướng dẫn : Từ E kẻ EP // BC , P thuộc BD
Bài 1:Cho hình thang cân ABCD (Ab song song với CD)có AB=Ad và BD=DC.Tính các góc của hình thang này.
Bài 2:Cho tam giác ABC đều.Vẽ đường vuông góc với BC tại C cắt AB tại E.Vẽ đường vuông góc với AB tại A cắt BC tại F.Chứng minh rằng ACFE là hình thang cân.
Bài 3:Cho tam giác ABC cân tại A ,M là điểm bất kì nằm giữa A và B.Trên tia đối của CA lấy điểm N sao cho CN=BM.Vẽ ME và NF lần lượt vuông góc với đường thẳng BC.Gọi I là giao điểm của MN và BC.
a)Chứng minh : IE=IF
b)Trên cạnh AC lấy điểm D sao cho CD=CN.Chứng minh rằng BMDC là hình thang cân.
Bài 4:Cho tam giác ABC cân ở A ;M là trung điểm của BC.Trên tia AM lấy điểm N;BN cắt AC ở D,CN cắt AB ở E.Chứng minh BEDC là hình thang cân
Bài 5:Cho hình thang cân ABCD (AB song song với CD) ; góc D=60 độ,AD=AB
a)Chứng minh :DB là phân giác góc ADC
b)Chứng minh : DB vuông góc với BC
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
cho tam giác ABC vuông tại A có góc ABC = 60° kẻ tia Ax song song với BC trên Ax lấy điểm D sao cho AD =DC
A) tính số đo góc BAD và góc ĐAC
B). Chứng minh tứ giác ABCD là hình thang cân
C) gọi E là trung điểm của BC chứng minh tứ giác ADEB là hình thoi
cho tam giác ABC vuông tại A có góc ABC = 60° kẻ tia Ax song song với BC trên Ax lấy điểm D sao cho AD =DC
A) tính số đo góc BAD và góc ĐAC
B). Chứng minh tứ giác ABCD là hình thang cân
C) gọi E là trung điểm của BC chứng minh tứ giác ADEB là hình thoi