Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Sảng
Xem chi tiết
Nguyễn Ngọc Vy
11 tháng 6 2017 lúc 20:52

a) \(\left(x\right)^2+2\left(x\right)\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

Nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

b) \(\left(x^2-2x+1\right)+\left(4y^2+8y+1\right)+\left(z^2-6z+9\right)+4\)

\(=\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2+4\)

Vì \(\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2\ge0\forall x,y,z\)

Nên \(\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2+4>0\forall x,y,z\)

Nguyễn Thảo Nguyên
Xem chi tiết
Lê Tài Bảo Châu
6 tháng 8 2019 lúc 21:08

làm tắt ko hiểu thì hỏi 

a) \(=x^2+2.xy.\frac{1}{2}+\frac{1}{4}y^2-\frac{1}{4}y^2+y^2+1\)

\(=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)

b) \(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6x+9\right)+1\)

\(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\)

Tiểu Sam
Xem chi tiết
Ngô Chi Lan
23 tháng 8 2020 lúc 9:00

Bài làm:

a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)

\(=-\left(2x+1\right)^2-1\le-1< 0\left(\forall x\right)\)

=> đpcm

b) \(x^2+4y^2+z^2-2x-6z+8y+15\)

\(=\left(x^2-2x+1\right)+\left(4y^2-8y+4\right)+\left(z^2-6z+9\right)+1\)

\(=\left(x-1\right)^2+4\left(y-1\right)^2+\left(z-3\right)^2+1\ge1>0\left(\forall x\right)\)

=> đpcm

Khách vãng lai đã xóa
Tạ Đức Hoàng Anh
23 tháng 8 2020 lúc 9:00

a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)

                                           \(=-\left(2x+1\right)^2-1\)

    Vì \(-\left(2x+1\right)^2\le0\forall x\)\(\Rightarrow\)\(-\left(2x+1\right)^2-1\le-1\forall x\)

              \(\Rightarrow\)\(-\left(2x+1\right)^2-1< 0\forall x\)

              \(\Rightarrow\)\(-4x^2-4x-2< 0\forall x\)( ĐPCM )

b) Ta có: \(x^2+4y^2+z^2-2x-6z+8y+15\)

        \(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)

        \(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\)

    Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(2y+2\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{cases}}\)\(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2\ge0\forall x,y,z\)

          \(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\ge1\forall x,y,z\)

          \(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\forall x,y,z\)( ĐPCM )

Khách vãng lai đã xóa
Xyz OLM
23 tháng 8 2020 lúc 9:04

a) Ta có : -4x2 - 4x - 2 = -(4x2 + 4x + 1) - 1 = -(2x + 1)2 - 1 < 0 (đpcm)

b) x2 + 4y2 + z2 - 2x - 6z + 8y + 15

= (x2 - 2x + 1) + (z2 - 6z + 9) + (4y2 + 8y + 4) + 1

= (x - 1)2 + (z - 3)2 + 4(y + 1)2 + 1 > 0 (đpcm)

Khách vãng lai đã xóa
Trần Đình Hoàng Quân
Xem chi tiết

\(x\) mũ bao nhiêu thì cô và các bạn mới giúp được chứ em?

Trần Đình Hoàng Quân
18 tháng 8 2023 lúc 20:05

7) Chứng minh rằng: x^2 +4y^2 + z^2- 2x -6z +8y + 15 > 0 với mọi x, y, z.

Để được trợ giúp nhanh chóng thì lần sau nhớ ghi đề bài cẩn thận em nhé.

A = \(x^2\) + 4y2 + z2 - 2\(x\) - 6z + 8y + 15

A = (\(x^2\) - 2\(x\) + 1) + (4y2 + 8y + 4) + (z2 - 6z + 9) + 1

A = (\(x\) -1)2 + (2y+2)2 + (z-3)2 + 1

Vì (\(x-1\))2 ≥ 0 ∀ \(x\) ;  (2y +2)2 ≥ 0 ∀ y; (z-3)2 ≥ 0 ∀ z

⇒ A = (\(x\) - 1)2 + (2y+2)2 + (z-3)2 + 1 ≥ 1 > 0 ∀ \(x\); y;z (đpcm)

 

Quân Nguyễn Anh
Xem chi tiết
tôn thị tuyết mai
9 tháng 8 2015 lúc 20:19

a.(x+y)2-xy+1>0 với mọi y,x

Asuna
26 tháng 7 2017 lúc 18:02

b/ a. ( x + y ) 2 -xy + 1 > 0 vs mọi x, y 

TK , MK ĐANG BỊ ÂM ĐIỂM

son go ku
4 tháng 2 2018 lúc 10:25

minh chiu

Nguyễn Ngọc Anh Thơ
Xem chi tiết
Trần Việt Hoàng
Xem chi tiết
Trần Thanh Phương
21 tháng 11 2018 lúc 19:49

Tham khảo bài làm của mình : Câu hỏi của Phạm Bá Gia Nhất - Toán lớp 8 - Học toán với OnlineMath

Hàn Vũ Nhi
Xem chi tiết
KAl(SO4)2·12H2O
13 tháng 7 2019 lúc 16:38

x2 + 4y2 + z2 - 2x - 6z + 8y + 15 

= (x2 - 2x + 1) + (4y2 + 8y + 4) + (z2 - 6z + 9) + 1

= (x - 1)2 + 4(y + 1)2 + (z - 3)2 + 1

Thấy: (x - 1)2 > 0

          4(y + 1)2 > 0 

          (z - 3)2 > 0 

<=> (x - 1)2 + 4(y + 1)2 + (z - 3)2 > 0 

<=> (x - 1)2 + 4(y + 1)2 + (z - 3)2 > 0 + 1 = 1 > 0

=> đpcm

Diệu Anh Hoàng
Xem chi tiết
15 1 9 13
2 tháng 9 2018 lúc 23:10

bạn cố tìm mọi cánh biến vế trái thành 1 dạng bình phương

rồi nó sẽ racau trả lời , gợi ý đó

Songoku
13 tháng 7 2019 lúc 17:00

sử dụng hằng đẳng thức 1.2

Đnh
23 tháng 4 2020 lúc 16:00

Chứng minh rằng:

a) A=9x^2-6x+11>0 với mọi x

b) (x^2-2xy+y^2)+1>0 với mọi x,y

c) (x-x^2+1)<0 với mọi x 

Khách vãng lai đã xóa