CMR:
a,\(x^2+xy+y^2+1>0\)với mọi x
b,\(x^2+4y^2+2^2-2x-6z+8y+15>0\)với mọi x
CMR:
a,\(x^2+xy+y^2+1>0\) với mọi x
b,\(x^2+4y^2+z^2-2x-6z+8y+15\) với mọi x
a) \(\left(x\right)^2+2\left(x\right)\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
Nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
b) \(\left(x^2-2x+1\right)+\left(4y^2+8y+1\right)+\left(z^2-6z+9\right)+4\)
\(=\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2+4\)
Vì \(\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2\ge0\forall x,y,z\)
Nên \(\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2+4>0\forall x,y,z\)
Chứng minh rằng;
a) \(x^2+xy+y^2+1>0\)với mọi x, y)
b)\(x^2+4y^2+z^2-2x-6z+8y+15>0\)(với mọi x, y, z)
mình cần gấp. mọi người giúp đỡ
làm tắt ko hiểu thì hỏi
a) \(=x^2+2.xy.\frac{1}{2}+\frac{1}{4}y^2-\frac{1}{4}y^2+y^2+1\)
\(=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)
b) \(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6x+9\right)+1\)
\(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\)
Chứng minh rằng :
a, -4x^2 - 4x -2 < 0 với mọi x
b, x^2 + 4y^2 + z^2 -2x - 6z + 8y + 15 > 0 với mọi x,y,z
Bài làm:
a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)
\(=-\left(2x+1\right)^2-1\le-1< 0\left(\forall x\right)\)
=> đpcm
b) \(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2-8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y-1\right)^2+\left(z-3\right)^2+1\ge1>0\left(\forall x\right)\)
=> đpcm
a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)
\(=-\left(2x+1\right)^2-1\)
Vì \(-\left(2x+1\right)^2\le0\forall x\)\(\Rightarrow\)\(-\left(2x+1\right)^2-1\le-1\forall x\)
\(\Rightarrow\)\(-\left(2x+1\right)^2-1< 0\forall x\)
\(\Rightarrow\)\(-4x^2-4x-2< 0\forall x\)( ĐPCM )
b) Ta có: \(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(2y+2\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{cases}}\)\(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2\ge0\forall x,y,z\)
\(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\ge1\forall x,y,z\)
\(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\forall x,y,z\)( ĐPCM )
a) Ta có : -4x2 - 4x - 2 = -(4x2 + 4x + 1) - 1 = -(2x + 1)2 - 1 < 0 (đpcm)
b) x2 + 4y2 + z2 - 2x - 6z + 8y + 15
= (x2 - 2x + 1) + (z2 - 6z + 9) + (4y2 + 8y + 4) + 1
= (x - 1)2 + (z - 3)2 + 4(y + 1)2 + 1 > 0 (đpcm)
cầu xin mn giúp với
7) Chứng minh rằng: x^2 +4y^2 + z^2- 2x- 6z +8y + 15 > 0 với mọi x, y, z.
\(x\) mũ bao nhiêu thì cô và các bạn mới giúp được chứ em?
7) Chứng minh rằng: x^2 +4y^2 + z^2- 2x -6z +8y + 15 > 0 với mọi x, y, z.
Để được trợ giúp nhanh chóng thì lần sau nhớ ghi đề bài cẩn thận em nhé.
A = \(x^2\) + 4y2 + z2 - 2\(x\) - 6z + 8y + 15
A = (\(x^2\) - 2\(x\) + 1) + (4y2 + 8y + 4) + (z2 - 6z + 9) + 1
A = (\(x\) -1)2 + (2y+2)2 + (z-3)2 + 1
Vì (\(x-1\))2 ≥ 0 ∀ \(x\) ; (2y +2)2 ≥ 0 ∀ y; (z-3)2 ≥ 0 ∀ z
⇒ A = (\(x\) - 1)2 + (2y+2)2 + (z-3)2 + 1 ≥ 1 > 0 ∀ \(x\); y;z (đpcm)
Bài tập hằng đẳng thức ko bik dễ hay bình thường các bạn làm hộ mình vs
Làm câu b) trước ý.Chứng minh rằng:
a)x2+xy+y2+1>0 với mọi x,y
b)x2+4y2+z2-2x-6z+8y+15>0 với mọi x,y,z
b/ a. ( x + y ) 2 -xy + 1 > 0 vs mọi x, y
TK , MK ĐANG BỊ ÂM ĐIỂM
Chứng tỏ :
a)-4x2-4x-2<0, với mọi x
b)x2+4y2+z2-2x-6z+8y+15>0, với mọi x, y, z
Chứng minh rằng : x2+4y2+z2-2x-6z+8y+15>0 với mọi x;y;z
Tham khảo bài làm của mình : Câu hỏi của Phạm Bá Gia Nhất - Toán lớp 8 - Học toán với OnlineMath
Chứng minh rằng :
x^2 + 4y^2 + z^2 - 2x - 6z + 8y +15 > 0 với mọi x
x2 + 4y2 + z2 - 2x - 6z + 8y + 15
= (x2 - 2x + 1) + (4y2 + 8y + 4) + (z2 - 6z + 9) + 1
= (x - 1)2 + 4(y + 1)2 + (z - 3)2 + 1
Thấy: (x - 1)2 > 0
4(y + 1)2 > 0
(z - 3)2 > 0
<=> (x - 1)2 + 4(y + 1)2 + (z - 3)2 > 0
<=> (x - 1)2 + 4(y + 1)2 + (z - 3)2 > 0 + 1 = 1 > 0
=> đpcm
Câu 30: Chứng minh rằng:
a) \(x^2+x+1>0\) với mọi x
b) \(x^2-x+1>0\)với mọi x
c) \(-4x^2-4x-2< 0\)với mọi x
d) \(x^2+4y^2+z^2-2x-6z+8y+15>0\)với mọi x, y,z
bạn cố tìm mọi cánh biến vế trái thành 1 dạng bình phương
rồi nó sẽ racau trả lời , gợi ý đó
Chứng minh rằng:
a) A=9x^2-6x+11>0 với mọi x
b) (x^2-2xy+y^2)+1>0 với mọi x,y
c) (x-x^2+1)<0 với mọi x