chứng tỏ rằng \(\frac{n+2}{2n+3},\left(n\in N\right)\)là phân số tối giản.
1, chứng tỏ rằng phân số\(\frac{12n+1}{30n+2}\)(n thuộc N) là tối giản
Chứng tỏ rằng phân số 2n+1/3n+2 là phân số tối giản
gọi d là ƯC(2n+1; 3n+2) (1)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+3\right)-\left(6n+4\right)⋮d\)
\(\Rightarrow6n+3-6n-4⋮d\)
\(\Rightarrow\left(6n-6n\right)-\left(4-3\right)⋮d\)
\(\Rightarrow0-1⋮d\)
\(\Rightarrow-1⋮d\)
\(\Rightarrow d=\pm1\) (2)
\(\left(1\right)\left(2\right)\RightarrowƯC\left(2n+1;3n+2\right)=\pm1\)
=> 2n+1/3n+2 là phân số tối giản
chứng minh rằng mọi phân số có dạng \(\frac{n+1}{2n+3}\)với ( n thuộc N ) đều là phân số tối giản
Để phân số n+1/2n+3 là phân số tối giản thì (n+1; 2n+3) =1
Gọi (n+1; 2n+3) =d => n+1 \(⋮\)d; 2n+3 \(⋮\)d
=> (2n+3) - (n+1) \(⋮\)d
=> (2n+3) -2(n+1) \(⋮\)d
=> 2n+3 -2n -2 \(⋮\)d
=> 1 \(⋮\)d
=> n+1/2n+3 là phân số tối giản
Vậy...
Gọi d là ƯC(n+1 ; 2n + 3)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)
=> ( 2n + 3 ) - ( 2n + 2 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(n +1 ; 2n + 3) = 1
=> \(\frac{n+1}{2n+3}\)tối giản ( đpcm )
Chứng tỏ rằng 2n+1/3n+2 là phân số tối giản
Gọi d là ƯC(2n+1 và 3n+2)
Ta có
2n+1 chia hết cho d => 6n+3 chia hết cho d
3n+ 2 chia hết cho d => 6n+4 chia hết cho d
=> 6n+4 - 6n+3 chia hết cho d => 1 chia hết cho d
=> 2n+1/3n+2 là phân số tối giản
=> đpcm
Gọi d là ước chung lớn nhất của 2n+1 và 3n+2
2n+1 chia hết cho d
=) ---------------------------------------
3n+2 chia hết cho d
6n+3 chia hết cho d
=)--------------------------------------------------
6n+4 chia hết cho d
=)1 chia hết cho d.Mà d thuộc N*=)d=1
=)UCLN(2n+2;3n+2)=1
Vậy phân số.................là phân số tối giản (ĐPCM)
Nhớ k
Chứng minh rằng:\(\frac{n+2011}{n+2012}\)là phân số tối giản\(\left(n\in Z\right)\)
Gọi d là ƯC(n + 2011, n + 2012)
\(\Rightarrow\hept{\begin{cases}n+2011⋮d\\n+2012⋮d\end{cases}}\)
\(\Rightarrow\left(n+2012\right)-\left(n+2011\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
\(\Rightarrow\frac{n+2011}{n+2012}\) là phân số tối giản.
Chứng minh rằng phân số 2n+3/2n+5 là phân số tối giản.
\(\frac{2n+3}{2n+5}=\frac{2n+2+1}{2n+2+3}=\frac{2\left(n+1\right)+1}{2\left(n+1\right)+3}\)Ta thấy phân số trên có tử và mẫu là 2 số lẽ liên tiếp nên là phân số tối giản.
Chứng tỏ rằng \(\frac{12n+1}{30n+2}\)là p/s tối giản (n thuộc N)
Gọi d là UCLN của tử và mẫu
12n+1 chia hết cho d 60n+5 chia hết cho d
=>
30n+2 chia hết cho d 60n+4 chia hết cho d
=>(60n+5)-(60n+4) chia hết cho d
=> 1 chia hết cho d
d thuộc Ư(1)=1
ƯCLN(12n+1;30n+2)=1
Vậy 12n+1/30n+2 là p/s tối giản
cho phân số tối giản a/b ( a,b thuộc N, a<b , b khác 0 ) chứng tỏ rằng b-a/b cũng tối giản
Gỉa sử phân số \(\frac{b-a}{b}\)chưa tối giản. Như vậy b - a và b có ước chung là d > 1
Ta có b - a = dq1 (1) và b = dq2 (2) , trong đó q1 , q2 thuộc N và q2 > q1.
Từ (1) ; (2) suy ra a = d(q2 - q1 ) nghĩa là a cũng có ước là d.
Như vậy a và b có ước chung là d > 1 trái với giả thiết \(\frac{a}{b}\) là phân số tôi giản
Vậy nếu \(\frac{a}{b}\) tối giản thì \(\frac{b-a}{b}\) cũng tối giản
chứng tỏ rằng
\(\frac{12n+1}{30n+2}\) là phân số tối giản
Bạn xem ở đây: Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath hoặc
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Gọi d = ƯCLN (12n + 1, 30n + 1)
=> 12n + 1 chia hết cho d
và 30n + 1 chia hết cho d
=> 5(12n + 2) = 60n + 10 chia hết cho d
và 2(30n + 1) = 60n + 2 chia hết cho d
=> (60n + 10) - (60n + 2) = 8 chia hết cho d => d = 1, 2, 4 hoặc 8
Do 12n + 1 là số lẻ nên d không thể bằng 2, 4, 8 . vậy d = 1
=> phân số đã cho là phân số tối giản