gọi d là ƯCLN ( n + 2 ; 2n + 3 )
Ta có : n + 2 \(⋮\)d \(\Rightarrow\)2 . ( n + 2 ) \(⋮\)d ( 1 )
2n + 3 \(⋮\)d ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)2 . ( n + 2 ) - ( 2n + 3 )
= ( 2n + 4 ) - ( 2n + 3 ) = 1 \(⋮\)d
\(\Rightarrow\)d = 1
Mà phân số tối giản thì có ƯCLN của tử số và mẫu số bằng 1
Vậy phân số \(\frac{n+2}{2n+3}\)là phân số tối giản
để phân số là phân số tối giản điều kiên là : \(\left(n+2;2n+3\right)=1\)
Ta gọi ước chung lớn nhất của \(n+2;2n+3\)là \(d\)ta có: \(\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+2\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+4⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow n+4-\left(n+3\right)⋮d\Rightarrow n+4-n-3⋮d\)\(\Rightarrow1⋮d\Leftrightarrow1\)
do đó \(UCLN\left(n+2;2n+3\right)=1\)vậy phân số là phân số tối giản
ta có:giả sử ƯCLN (n+2 ;2n+3)=d
ta có n+2=2(n+2)=2n+4 (1)
2n+3=2n+3 (2)
Từ (1) và (2)
ta có :(2n+4)-(2n+3) chia hết cho d
1 chia hết cho d
d thuộc ước của 1
nên n+2 và 2n+3 nguyên tố cùng nhau
Vậy n+2/2n+3 là phân số tối giản
Gọi d là ƯCLN(n + 2, 2n + 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+2\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+4⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+2,2n+3\right)=1\)
\(\Rightarrow\frac{n+2}{2n+3}\) là phân số tối giản.