Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hoàng hạnh nguyên

chứng tỏ rằng \(\frac{n+2}{2n+3},\left(n\in N\right)\)là phân số tối giản. 

Thanh Tùng DZ
8 tháng 6 2017 lúc 7:15

gọi d là ƯCLN ( n + 2 ; 2n + 3 )

Ta có : n + 2 \(⋮\)\(\Rightarrow\)2 . ( n + 2 ) \(⋮\)d ( 1 )

           2n + 3 \(⋮\)d ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)2 . ( n + 2 ) - ( 2n + 3 )

= ( 2n + 4 ) - ( 2n + 3 ) = 1 \(⋮\)d

\(\Rightarrow\)d = 1

Mà phân số tối giản thì có ƯCLN của tử số và mẫu số bằng 1

Vậy phân số \(\frac{n+2}{2n+3}\)là phân số tối giản

Hoàng Thanh Tuấn
8 tháng 6 2017 lúc 7:21

để phân số là phân số tối giản điều kiên là : \(\left(n+2;2n+3\right)=1\)

Ta gọi ước chung lớn nhất của \(n+2;2n+3\)là \(d\)ta có: \(\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+2\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+4⋮d\\2n+3⋮d\end{cases}}}\)

\(\Rightarrow n+4-\left(n+3\right)⋮d\Rightarrow n+4-n-3⋮d\)\(\Rightarrow1⋮d\Leftrightarrow1\)

do đó \(UCLN\left(n+2;2n+3\right)=1\)vậy phân số là phân số tối giản

Hoàng Thị Thu Cúc
8 tháng 6 2017 lúc 7:24

ta có:giả sử ƯCLN (n+2 ;2n+3)=d

ta có n+2=2(n+2)=2n+4 (1)

        2n+3=2n+3 (2)

Từ (1) và (2) 

ta có :(2n+4)-(2n+3) chia hết cho d

         1 chia hết cho d

          d thuộc ước của 1

       nên n+2 và 2n+3 nguyên tố cùng nhau

Vậy n+2/2n+3 là phân số tối giản

Sakuraba Laura
12 tháng 2 2018 lúc 8:45

Gọi d là ƯCLN(n + 2, 2n + 3), d ∈ N*

\(\Rightarrow\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+2\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+4⋮d\\2n+3⋮d\end{cases}}}\)

\(\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n+2,2n+3\right)=1\)

\(\Rightarrow\frac{n+2}{2n+3}\) là phân số tối giản.


Các câu hỏi tương tự
nguyễn thảo hân
Xem chi tiết
Thiên Bình Nhok
Xem chi tiết
Kochou Shinobu
Xem chi tiết
Jung Chaeyeon IOI đệ nhấ...
Xem chi tiết
BACHHONGHEO
Xem chi tiết
phạm như tâm
Xem chi tiết
Nguyễn Thị Anh Thư
Xem chi tiết
Virgo
Xem chi tiết
vu thi huyen
Xem chi tiết