Cho a,b,c>0 Cmr a^3/(a^2+ab+b^2)+b^3/(b^2+bc+c^2)+c^3/(c^2+ac+a^2)>=(a+b+c)/3
cho 4 điểm a b c không đồng thời bằng 0 và 2 biểu thức : M = a^3/(a^2+ab+b^2)+b^3/(b^2+bc+c^2)+c^3/(c^2+ac+a^2) và N = b^3/(a^2+ab+b^2)+c^3/(b^2+bc+c^2)+a^3/(c^2+ac+a^2). CMR: M >= (a+b+c)/8
cho 2 biểu thức mà c/m 1 biểu thức M là sao
Biểu thức N vứt sọt à hay làm cái j v :V
tớ cũng nghĩ vậy nhưng mãi sau mới biết chứng minh M =N rồi chứng minh N >=(a+b+c)/8 để suy ra M >=(a+b+c)/8
cho a,b,b>0 và
P= a^3/a^2+ab+b^2 + b^3/b^2+bc+c^2 + c^3/c^2+ac+a^2
Q=b^3/a^2+ab+b^2 + c^3/b^2+bc+c^2 + a^3/c^2+ac+a^2
CMR P=Q
.Tuy nhiên mik có thể chữa lại đề cho ae dễ đọc nha:
Cho a,b,c>0 và:
\(P=\frac{a^3}{a^2}+ab+b^2+\frac{b^3}{b^2}+bc+c^2+\frac{c^3}{c^2}+ac+a^2.\)
\(Q=\frac{b^3}{a^2}+ab+b^2+\frac{c^3}{b^2}+bc+c^2+\frac{a^3}{c^2}+ac+a^2.\)
Chứng minh rằng:P=Q.
Cho a,b,c>0;a+b+c=3
CMR:(a^2+bc)/(b^2+ac)+(b+ac)/(c+ab)+(c^2+ac)/(a+ab)>=3
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 = 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+4b+1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 +1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 +2009/ab+bc+ac >=670
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 = 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+4b+1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 +1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 +2009/ab+bc+ac >=670
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 = 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+4b+1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 +1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 +2009/ab+bc+ac >=670
Cho a, b, c>0 . CMR:
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}\ge\frac{a+b+c}{3}\)
Đầu tiên ta nhắc lại một kết quả sau: Với mọi số dương \(x,y\) thì \(\frac{x^2-xy+y^2}{x^2+xy+y^2}\ge\frac{1}{3}.\) Thực vậy bất đẳng thức tương đương với \(3\left(x^2-xy+y^2\right)\ge x^2+xy+y^2\Leftrightarrow2\left(x^2+y^2\right)-4xy\ge0\Leftrightarrow2\left(x-y\right)^2\ge0.\) (Đúng).
Đặt vế trái của bất đẳng thức là \(S\) và đặt \(T=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}.\) Áp dụng hằng đẳng thức \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right),\) ta được
\(S-T=\frac{a^3-b^3}{a^2+ab+b^2}+\frac{b^3-c^3}{b^2+bc+c^2}+\frac{c^3-a^3}{c^2+ca+a^2}=\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=0\).
Suy ra \(S=T.\) Ta có
\(2S=S+T=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
\(=\left(a+b\right)\frac{a^2-ab+b^2}{a^2+ab+b^2}+\left(b+c\right)\frac{b^2-bc+c^2}{b^2+bc+c^2}+\left(c+a\right)\frac{c^2-ca+a^2}{c^2+ca+a^2}\)
\(\ge\frac{a+b}{3}+\frac{b+c}{3}+\frac{c+a}{3}=\frac{2\left(a+b+c\right)}{3}.\)
Do đó \(2S\ge\frac{2\left(a+b+c\right)}{3}\to S\ge\frac{a+b+c}{3}.\)
Cho mk hỏi tại sao lại phải đặt thêm biểu thức T vậy ???
Mk vẫn ko hiểu cho lắm !!!
Cho a,b,c >0
CMR:\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{a^2+ac+c^2}\ge\frac{a+b+c}{3}\)
Một số đánh giá: \(a^2+ab+b^2=\frac{3}{4}\left(a+b\right)^2+\frac{1}{4}\left(a-b\right)^2\ge\frac{3}{4}\left(a+b\right)^2\)
\(ab=\frac{\left(a+b\right)^2}{4}-\frac{\left(a-b\right)^2}{4}\le\frac{\left(a+b\right)^2}{4}\)
\(\frac{a^3}{a^2+ab+b^2}=\frac{a\left(a^2+ab+b^2\right)-a\left(ab+b^2\right)}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\)
\(\ge a-\frac{\frac{\left(a+b\right)^2}{4}.\left(a+b\right)}{\frac{3}{4}\left(a+b\right)^2}=a-\frac{a+b}{3}=\frac{2a-b}{2}\)
Tương tự và suy ra đpcm.
Cho a,b,c>0 CMR
\( \frac{a^3}{bc}+ \frac{b^3}{ac}+ \frac{c^3}{ab}\ge \frac{3(a^2+b^2+c^2)}{a+b+c} \)