Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Đình Đại
Xem chi tiết
Witch Rose
23 tháng 6 2019 lúc 20:00

Đkxđ: \(\hept{\begin{cases}x\ge-\frac{1}{4}\\y\ge2\end{cases}}\)

\(\Leftrightarrow2+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=y\Leftrightarrow2+\frac{1}{2}+\sqrt{x+\frac{1}{2}}=y\Leftrightarrow\sqrt{x+\frac{1}{2}}+\frac{5}{2}=y\)

do x,y nguyên dương nên \(\sqrt{x+\frac{1}{2}}+\frac{5}{2}\)nguyên dương\(\Leftrightarrow\sqrt{x+\frac{1}{2}}=\frac{k}{2}\)(K là số nguyên lẻ, \(k>1\))

\(\Rightarrow x=\frac{k^2-2}{4}\)

do \(k^2\)là số chính phương chia 4 dư 0,1 \(\Rightarrow x=\frac{k^2-2}{4}\notin Z\)

=> ko tồn tại cặp số nguyên dương x,y tmđkđb

Văn
Xem chi tiết
Nguyễn Phúc Đại
Xem chi tiết
nguyenthithuytien
Xem chi tiết
Vân knth
Xem chi tiết
phan tuấn anh
22 tháng 7 2016 lúc 17:48

mk nghĩ bạn viết sai đề bài ; mk đoán đề bài ntn \(\hept{\begin{cases}\frac{1}{x}+\frac{4}{y}+\frac{9}{z}=3\\x+y+z\le12\end{cases}}\) 

để mk làm theo đề bài của mk nhé 

nhân từng vế của các bất đẳng thức ta có \(\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)\left(x+y+z\right)=\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{2}{\sqrt{y}}\right)^2+\left(\frac{3}{\sqrt{z}}\right)^2\right]\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\ge\left(1+2+3\right)^2=36\)( bất đẳng thức bu-nhi-a- cốp=xki)

dấu ''='' xảy ra khi \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) ==> \(\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)

phan tuấn anh
22 tháng 7 2016 lúc 17:51

x=2;y=4;z=6 nha 

Vân knth
22 tháng 7 2016 lúc 20:20

cảm ơn bạn nha

Lê Thu Hà
Xem chi tiết
Đàm Thị Minh Hương
22 tháng 6 2018 lúc 7:07

Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)

Nguyên
Xem chi tiết
Mr Lazy
3 tháng 8 2016 lúc 17:10

\(\text{ĐK: }\hept{\begin{cases}0\le x\le1\\\sqrt{x}\ne\sqrt{1-x}\end{cases}\Leftrightarrow}\hept{\begin{cases}0\le x\le1\\2x-1\ne0\end{cases}}\)

\(\frac{6x-3}{\sqrt{x}-\sqrt{1-x}}=\frac{3\left(2x-1\right)\left(\sqrt{x}+\sqrt{1-x}\right)}{x-\left(1-x\right)}=\frac{3\left(2x-1\right)\left(\sqrt{x}+\sqrt{1-x}\right)}{2x-1}=3\left(\sqrt{x}+\sqrt{1-x}\right)\)\(\text{Đặt }t=\sqrt{x}+\sqrt{1-x}\)

\(t^2=x+1-x+2\sqrt{x}\sqrt{1-x}=1+2\sqrt{x-x^2}\)

\(\Rightarrow2\sqrt{x-x^2}=t^2-1\)

\(pt\rightarrow3t=3+t^2-1\Leftrightarrow t^2-3t+2=0\Leftrightarrow\orbr{\begin{cases}t=1\\t=2\end{cases}}\)

\(pt\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+\sqrt{1-x}=1\\\sqrt{x}+\sqrt{1-x}=2\end{cases}}\)

trần thị hoa
Xem chi tiết
Cẩm Vy Nguyễn
Xem chi tiết