Bạn nào giải được phương trình thì giải giùm mình :
x + 1 = \(\frac{1}{3}\). y - 3
tìm nghiệm nguyên duong của phương trình
\(2+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=y\)
các bản giải chi tiết ra giùm mình nha! khúc nào mà kiến thức vi diệu quá ấy , thì các bạn ghi lời giải thích giùm mình.
cảm ơn các bạn nhiều !!!!
Đkxđ: \(\hept{\begin{cases}x\ge-\frac{1}{4}\\y\ge2\end{cases}}\)
\(\Leftrightarrow2+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=y\Leftrightarrow2+\frac{1}{2}+\sqrt{x+\frac{1}{2}}=y\Leftrightarrow\sqrt{x+\frac{1}{2}}+\frac{5}{2}=y\)
do x,y nguyên dương nên \(\sqrt{x+\frac{1}{2}}+\frac{5}{2}\)nguyên dương\(\Leftrightarrow\sqrt{x+\frac{1}{2}}=\frac{k}{2}\)(K là số nguyên lẻ, \(k>1\))
\(\Rightarrow x=\frac{k^2-2}{4}\)
do \(k^2\)là số chính phương chia 4 dư 0,1 \(\Rightarrow x=\frac{k^2-2}{4}\notin Z\)
=> ko tồn tại cặp số nguyên dương x,y tmđkđb
giải phương trình nghiệm nguyên dương 1/x + 1/y = 1/3
Bạn nào trả lời giùm mình nha
Thanks <3
giải phương trình \(\frac{4}{5}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) (x,y,z > 0) các bạn giải đầy đủ tất cả các bước giùm mình :)) thank you
Bài 1: Giải các phương trình sau
a) x+ √(x-1)=13
b) √(2x +5) - √(3x-5)=2
c) 3√(x+34) - 3√(x-3)=1
d) √(1+x√(x2+4))= x+1
Các bạn biết bài nào thì giải giùm mình, mình đang cần gấp lắm
( Cảm ơn nhé!)
giải hệ phương trình
\(\hept{\begin{cases}\frac{1}{x}+\frac{9}{y}+\frac{9}{z}=3\\x+y+z\le12\end{cases}}\)
bạn nào biết thì làm hộ mình nha...thaks
mk nghĩ bạn viết sai đề bài ; mk đoán đề bài ntn \(\hept{\begin{cases}\frac{1}{x}+\frac{4}{y}+\frac{9}{z}=3\\x+y+z\le12\end{cases}}\)
để mk làm theo đề bài của mk nhé
nhân từng vế của các bất đẳng thức ta có \(\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)\left(x+y+z\right)=\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{2}{\sqrt{y}}\right)^2+\left(\frac{3}{\sqrt{z}}\right)^2\right]\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\ge\left(1+2+3\right)^2=36\)( bất đẳng thức bu-nhi-a- cốp=xki)
dấu ''='' xảy ra khi \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) ==> \(\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)
GIẢI HỆ PHƯƠNG TRÌNH ( Mình không gõ được hệ phương trình nên trong một câu mình để hai phương trình, các bạn tự hiểu là hệ phương trình )
1,
( 1 / x + y ) + ( 1 / x - y ) = 5 / 8
( 1 / x + y ) - ( 1 / x - y ) = - 3 / 8
2,
( 4 / 2x - 3y ) + ( 5 / 3x + y ) = - 2
( 3 / 3x + y ) - ( 5 / 2x + 3y ) = 21
MÌNH ĐANG CẦN GẤP GIÚP MÌNH NHÉ MÌNH SẼ TICK NHANH CHO BẠN NÀO GIẢI ĐẦY ĐỦ VÀ NHANH 😭😭😭
Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)
giải phương trình
\(\frac{6x-3}{\sqrt{x}-\sqrt{1-x}}=3+2\sqrt{x-x^2}\)
bạn nào giải giúp mình , mình tick cho
\(\text{ĐK: }\hept{\begin{cases}0\le x\le1\\\sqrt{x}\ne\sqrt{1-x}\end{cases}\Leftrightarrow}\hept{\begin{cases}0\le x\le1\\2x-1\ne0\end{cases}}\)
\(\frac{6x-3}{\sqrt{x}-\sqrt{1-x}}=\frac{3\left(2x-1\right)\left(\sqrt{x}+\sqrt{1-x}\right)}{x-\left(1-x\right)}=\frac{3\left(2x-1\right)\left(\sqrt{x}+\sqrt{1-x}\right)}{2x-1}=3\left(\sqrt{x}+\sqrt{1-x}\right)\)\(\text{Đặt }t=\sqrt{x}+\sqrt{1-x}\)
\(t^2=x+1-x+2\sqrt{x}\sqrt{1-x}=1+2\sqrt{x-x^2}\)
\(\Rightarrow2\sqrt{x-x^2}=t^2-1\)
\(pt\rightarrow3t=3+t^2-1\Leftrightarrow t^2-3t+2=0\Leftrightarrow\orbr{\begin{cases}t=1\\t=2\end{cases}}\)
\(pt\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+\sqrt{1-x}=1\\\sqrt{x}+\sqrt{1-x}=2\end{cases}}\)
Nhờ các bạn giải giùm mình 5 bài luôn nhé! Mình đang cần gấp lắm! Mình cảm ơn.
1. Cho x,y,z khác 0 và (x+y+ z)^2 = x^2+y^2+z^2.
C/m 1/x^3 + 1/y^3 + 1/z^3= 3/x*y*z.
2. Giải phương trình:
x^3 + 3ax^2 + 3(a^2 -bc)x +a^3+b^3 +c^3
(Ẩn x)
3. Tìm nghiệm nguyên của phương trình:
(x+y)^3=(x-2)^3 + (y+2)^3 + 6
4. Tìm nghiệm nguyên dương thỏa mãn cả hai phương trình
x^3 + y^3 + 3xyz= z^3
z^3=(2x+2y)^3
\(\frac{\left|x-1\right|+3}{\left|5-x\right|+x}< 4\)
Giải giùm mình bất phương trình này với