tính
B = 3/1x6 + 3/6x11 + ... + 1/91 x96
1/1x6 + 1/6x11 +...+ 1/96x101
\(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{96.101}\)
\(=\frac{1}{5}.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{96}-\frac{1}{101}\right)\)
\(=\frac{1}{5}.\left(1-\frac{1}{101}\right)\)
\(=1.\frac{100}{101}\)
\(=\frac{100}{101}\)
tính 1/1x6 + 1/6x11 +...+ 1/96x101
\(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{96.101}\)
\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{96}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
đặt biểu thức là A
5A=(1/1x6+1/6x11+...+1/96x101)x5=5/1x6+5/6x11+...+5/96x101
5A=6-1/1x6+11-6/6x11+...+101-96/96x101
5A=6/1x6-1/1x6+11/6x11-6/6x11+...+101/96x101-96/96x101
5A=1-1/6+1/6-1/11+...+1/96-1/101(sau khi rút gọn các phân số)
5A=1-1/101(còn lại sau khi trừ)
5A=100/101
A=100/101:5=20/101
huhu ai giúp tui zới :((
m =1/5x6 +1/6x7 +1/7x8 +.......+1/75x76
b =1/1x6 +1/6x11 +1/11x16 +1/16x21 + .... +1/91x96
n =5/1x6 +5/6x11 +5/11x16 +5/16x21 +.... +5/91x96
đấy có phải lớp 4 ko đấy
Lớp 4 đó nếu ai ko làm được thì ko phải học sinh giỏi đó nha
bạn lấy đâu ra cái bài này vậy
hơi căng đấy
chứng minh
1/1x6+1/6x11+...+1/(5n+1)(5n-6)=3/11
1/1x2x3+1/2x3x4+...1/18x19x20<1/4
1/1x2x3+1/2x3x4+...1/118x19x20<1/4 <--- cái này đề sai ở 1/118x19x20 phải là 1/18x19x20
-(x/2) + 2x/3 + (x+1)/4 + (2x+1)/6 = 3/8
3/(2x+1) + 10/(4x+2) - 6/(6x+3)=12/26
5/1x6 + 5/ 6x11 + ... +5/(5x+1)(5x+6)=2005/2006
-(x/2) + 2x/3 + (x+1)/4 + (2x+1)/6 = 3/8
3/(2x+1) + 10/(4x+2) - 6/(6x+3)=12/26
5/1x6 + 5/ 6x11 + ... +5/(5x+1)(5x+6)=2005/2006
x = 1x6+6x11+11x6+....+51x56
CMR:1/1x6+1/6x11+1/11x16+....+1/(5n+1)(5n+6)=n+1/5n+6
Gọi A = 1/1.6 + 1/6.11 +...+ 1/(5n+1)(5n+6)
5A = 5/1.6 + 5/6.11 + ... + 5/(5n+1)(5n+6)
=1 - 1/6 + 1/6 - 1/11 + ... + 1/5n+1 - 1/5n+6
=1 - 1/5n+6 =5n+6/5n+6 - 1/5n+6=5n+5 /5n+6
A=5/1x6+5/6x11+5/11x16+5/16x21+...+5/101x106
B=3/1x4+3/4x7+3/7x10+....+3/97x100
C=1/2x7+1/7x12+1/12x17+....+1/97x102
D=1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72
E=3/2x4+3/4x6+3/6x8+....+3/98x100
A = \(\dfrac{5}{1.6}\)+\(\dfrac{5}{6.11}\)+\(\dfrac{5}{11.16}\)+\(\dfrac{5}{16.21}\)+...+\(\dfrac{5}{101.106}\)
A = \(\dfrac{1}{1}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{101}-\dfrac{1}{106}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{106}\)
A = \(\dfrac{105}{106}\)
B = \(\dfrac{3}{1.4}\) +\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{97.100}\)
B = \(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\)
B = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)
B = \(\dfrac{99}{100}\)
C = \(\dfrac{1}{2.7}+\dfrac{1}{7.12}\) + \(\dfrac{1}{12.17}\)+...+ \(\dfrac{1}{97.102}\)
C= \(\dfrac{1}{5}\) \(\times\)( \(\dfrac{5}{2.7}+\dfrac{5}{7.12}+\dfrac{5}{12.17}+...+\dfrac{5}{97.102}\))
C = \(\dfrac{1}{5}\)\(\times\)(\(\dfrac{1}{2}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{12}\) + \(\dfrac{1}{12}\) - \(\dfrac{1}{17}\)+...+ \(\dfrac{1}{97}\) - \(\dfrac{1}{102}\))
C = \(\dfrac{1}{5}\) \(\times\)( \(\dfrac{1}{2}\) - \(\dfrac{1}{102}\))
C = \(\dfrac{1}{5}\) \(\times\) \(\dfrac{25}{51}\)
C = \(\dfrac{5}{51}\)
D = \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)
D = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\)+\(\dfrac{1}{7.8}\)+ \(\dfrac{1}{8.9}\)
D = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\) - \(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)
D = \(\dfrac{1}{1}\) - \(\dfrac{1}{9}\)
D = \(\dfrac{8}{9}\)
E = \(\dfrac{3}{2.4}\)+\(\dfrac{3}{4.6}\)+\(\dfrac{3}{6.8}\)+...+\(\dfrac{3}{98.100}\)
E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{2}{2.4}\) + \(\dfrac{2}{4.6}\)+ \(\dfrac{2}{6.8}\)+...+\(\dfrac{2}{98.100}\))
E = \(\dfrac{3}{2}\)\(\times\)( \(\dfrac{1}{2}\) - \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\) - \(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{8}\)+...+\(\dfrac{1}{98}\) - \(\dfrac{1}{100}\))
E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{1}{2}\) - \(\dfrac{1}{100}\))
E = \(\dfrac{3}{2}\) \(\times\) \(\dfrac{49}{100}\)
E = \(\dfrac{147}{200}\)