Những câu hỏi liên quan
Phạm Xuân	Định
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
1 tháng 12 2021 lúc 21:09

\(\hept{\begin{cases}x,y,z>0\\x+y+z=xyz\end{cases}}\)

\(\Rightarrow\frac{1}{xy} +\frac{1}{yz}+\frac{1}{zx}=1\)

Có : \(\frac{1}{\sqrt{1+x^2}}=\frac{1}{\sqrt{\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}+x^2}}\le\frac{1}{2.\sqrt{\frac{x^2y}{xyz}}}\le\frac{1}{2}\)

\(\frac{1}{\sqrt{1+y^2}}=\frac{1}{\sqrt{\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}+y^2}}\le\frac{1}{2\sqrt{\frac{y^2z}{xyz}}}\le\frac{1}{2}\)

\(\frac{1}{\sqrt{1+z^2}}=\frac{1}{\sqrt{\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}+z^2}}\le\frac{1}{2\sqrt{\frac{z^2x}{xyz}}}\le\frac{1}{2}\)

\(\Rightarrow\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\le\frac{3}{2}\)

Vậy P max = 3/2

Bình luận (0)
 Khách vãng lai đã xóa
Lân Dũng
Xem chi tiết
My Love bost toán
14 tháng 11 2018 lúc 19:38

a, Ta có \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

(=) \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)

(=) \(\frac{b-a}{ab}=\frac{1}{a-b}\)

(=) \(\left(b-a\right).\left(a-b\right)=ab\)

Vì a,b là 2 số dương

=> \(\hept{\begin{cases}ab>0\left(1\right)\\\left(b-a\right).\left(a-b\right)< 0\left(2\right)\end{cases}}\) 

Từ (1) và (2) => Không tồn tại hai số a,b để \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

Bình luận (0)
My Love bost toán
14 tháng 11 2018 lúc 19:47

b, Cộng vế với vế của 3 đẳng thức ta có :

\(x+y+y+z+x+z=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)

(=) \(2.\left(x+y+z\right)=-\frac{5}{6}\)

(=) \(x+y+z=\frac{-5}{12}\)

Ta có : \(x+y+z=\frac{-5}{12}\left(=\right)-\frac{7}{6}+z=-\frac{5}{12}\left(=\right)z=\frac{3}{4}\)

Lại có \(x+y+z=\frac{-5}{12}\left(=\right)x+\frac{1}{4}=-\frac{5}{12}\left(=\right)x=-\frac{2}{3}\)

Lại có \(x+y+z=-\frac{5}{12}\left(=\right)y+\frac{1}{12}=-\frac{5}{12}\left(=\right)y=\frac{-1}{2}\)

Bình luận (0)
kudo shinichi
14 tháng 11 2018 lúc 19:51

Ta có: \(\hept{\begin{cases}x+y=-\frac{7}{6}\\y+z=\frac{1}{4}\\z+x=\frac{1}{12}\end{cases}}\)

\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)

\(2.\left(x+y+z\right)=-\frac{5}{6}\)

\(\Rightarrow x+y+z=-\frac{5}{12}\)

\(\Rightarrow-\frac{7}{6}+z=-\frac{5}{12}\)

\(z=-\frac{5}{12}+\frac{7}{6}\)

\(z=-\frac{5}{12}+\frac{14}{12}\)

\(z=\frac{9}{12}\)

\(z=\frac{3}{4}\)

\(\Rightarrow x+\frac{3}{4}=\frac{1}{12}\)

\(x=\frac{1}{12}-\frac{3}{4}\)

\(x=-\frac{2}{3}\)

\(\Rightarrow-\frac{2}{3}+y=-\frac{7}{6}\)

\(y=-\frac{7}{6}+\frac{2}{3}\)

\(y=-\frac{1}{2}\)

Vậy \(\hept{\begin{cases}x=-\frac{2}{3}\\y=-\frac{1}{2}\\z=\frac{3}{4}\end{cases}}\)

Tham khảo nhé~

Bình luận (0)
Masked Man
Xem chi tiết
Masked Man
3 tháng 10 2018 lúc 21:11

sửa đề: z+4>0

Bình luận (0)
Pain zEd kAmi
3 tháng 10 2018 lúc 21:35

Đặt a = x + 1 > 0 ; b = y + 1 > 0 ; c = z + 4 > 0

a + b + c = 6

\(A=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)

Theo Bất Đẳng Thức ta có: \(\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}\ge\frac{16}{a+b+c}=\frac{8}{3}\)

\(\Rightarrow A\le\frac{1}{3}\)Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a=b\\a+b=c\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{3}{2}\\c=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}}\)

Vậy MaxA = 1/3 khi \(\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}\)

Bình luận (0)
tth_new
25 tháng 11 2018 lúc 10:25

PaiN: Nhưng x,y,z là các số thực dương thì sao z âm đc?

Bình luận (0)
Pham Quoc Cuong
Xem chi tiết
Chàng trai bóng đêm
14 tháng 5 2018 lúc 22:42

Ta có: \(\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2yx}+\frac{z^4}{zx+2zy}\)

Áp dụng BĐT Cauchy Schwarz, ta có:

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2yx}+\frac{z^4}{zx+2zy}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)

=> ĐPCM

Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{\sqrt{3}}\)

Bình luận (0)
Tran Le Khanh Linh
13 tháng 5 2020 lúc 5:11

Áp dụng BĐT Cosi cho 2 số dương, ta có:

\(\frac{9x^3}{y+2z}+x\left(y+2z\right)\ge6x^2;\frac{9y^3}{z+2x}+y\left(z+2x\right)\ge6y^2;\frac{9z^3}{x+2y}+z\left(x+2y\right)\ge6z^3\)

Lại có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)

Do đó \(\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}+3\left(xy+yz+zx\right)\ge6\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}\ge6\left(x^2+y^2+z^2\right)-3\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{\sqrt{3}}\)

Bình luận (0)
 Khách vãng lai đã xóa
Thu Nguyễn
Xem chi tiết
tth_new
12 tháng 12 2018 lúc 18:01

\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:

\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)

\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)

Dấu "=" xảy ra khi x = y = z = 1/3

Vậy A min = 3/4 khi x=y=z=1/3

Bình luận (0)
tth_new
12 tháng 12 2018 lúc 18:01

Bỏ chữ "Áp dụng bđt Cauchy-Schwarz,ta có:"giùm mình,nãy đánh nhầm ở bài làm trước mà quên xóa đi!

Bình luận (0)
tth_new
12 tháng 12 2018 lúc 18:04

À mà để phải là tìm Max mới đúng chứ nhỉ?

Do đó,bạn sửa dòng: \(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\) đến hết thành:

"\(\le3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)

Dấu "=" xảy ra khi x=y=z=1/3

Vậy A max = 3/4 khi x=y=z=1/3

Bình luận (0)
Nguyễn Lê Nhật Linh
Xem chi tiết
ngonhuminh
27 tháng 12 2016 lúc 17:40

\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\\ \)

\(\frac{x}{x+1}=\frac{x+1-1}{x+1}=1-\frac{1}{x+1}\) tương tự với y,z

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

=> ta đi tìm GTNN của (..)\(A=\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

đặt x+1=a;y+1=b;z+1=c nội suy cho đỡ đau đầu a+b+c=4

\(B=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) 

\(a+b+c\ge3\sqrt[3]{abc}\)(*)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{a}.\frac{1}{b}.\frac{1}{c}}\)(*)

(*).(**)\(\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{9}{\left(a+b+c\right)}\)

\(\Rightarrow B\ge\frac{9}{4}\Rightarrow A\ge\frac{9}{4}\Rightarrow P\le3-\frac{9}{4}=\frac{3}{4}\)

DS: \(P_{max}=\frac{3}{4}\) đẳng thức khi a=b=c=> x=y=z=1/3

Bình luận (0)
trần xuân quyến
21 tháng 8 2017 lúc 15:51

hay was

Bình luận (0)
Con Chim 7 Màu
16 tháng 5 2019 lúc 12:48

\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

\(=\frac{x}{x+1}-1+\frac{y}{y+1}-1+\frac{z}{z+1}-1+3\)

\(=-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)+3\le\frac{-9}{x+y+z+3}-3=-\frac{9}{4}-3=-\frac{21}{4}\)

Dấu '=' xảy ra khi \(x=y=z=\frac{1}{3}\)

Vậy \(P_{max}=-\frac{21}{4}\)khi \(x=y=z=\frac{1}{3}\)

:))

Bình luận (0)
VRCT_Ran Love Shinichi
Xem chi tiết
Linh Chi Phạm
Xem chi tiết
Thân thi thu
Xem chi tiết