b) 205 + ( 2003 + 95)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính nhanh:
a) 42 + 257 + 43+158;
b) 205 + ( 2003 + 95);
c) 283+119 + 37+17 + 81;
d) (25.35).40;
e) (125.9).80;
f) 11 + 12 + 13 + …+ 28 + 29.
a) 500
b) 2303
c) 537
d) 35000
e) 90000
f) 380
Giải phương trình
a, \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}\frac{x+4}{2001}\)
b, \(\frac{201-x}{99}+\frac{205-x}{97}+\frac{205-x}{95}+3=0\)
c, \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)
a) \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)
\(\Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)
\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
\(\Leftrightarrow x+2005=0\)
\(\Leftrightarrow x=-2005\)
b) Sửa đề :
\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\)
\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)
\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)
\(\Leftrightarrow x=300\)
c) \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)
\(\Leftrightarrow\frac{2-x}{2002}+1=\frac{1-x}{2003}+1-\frac{x}{2004}+1\)
\(\Leftrightarrow\frac{2004-x}{2002}=\frac{2004-x}{2003}-\frac{2004-x}{2004}\)
\(\Leftrightarrow\left(2004-x\right)\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)=0\)
\(\Leftrightarrow x=2004\)
Vậy....
Giải phương trình sau:
a) x+1/2004 + x+2/2003 = x+3/2002 + x+4/2001
b) 201-x/99 + 203-x/97 + 205-x/95 + 3 = 0
a) \(\dfrac{x+1}{2004}+\dfrac{x+2}{2003}=\dfrac{x+3}{2002}+\dfrac{x+4}{2001}\)
⇔ \(\dfrac{x+1}{2004}+1+\dfrac{x+2}{2003}+1=\dfrac{x+3}{2002}+1+\dfrac{x+4}{2001}+1\)
⇔ \(\dfrac{x+2005}{2004}+\dfrac{x+2005}{2003}=\dfrac{x+2005}{2002}+\dfrac{x+2005}{2001}\)
⇔ \(\left(x+2005\right)\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)\)=0
Vì\(\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)\)<0 nên phương trinh đã cho tương đương:
x+2005=0 ⇔x=-2005
b) \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)
⇔ \(\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)
⇔ \(\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)
⇔ \(\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)
Vì \(\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)>0\) nên phương trình đã cho tương đương:
300-x=0 ⇔ x=300
giai phuong trinh
1.
(x+1)/2004+(x+2)/2003=(x+3)/2002+(x+4)/2001
2.(201-x)/99+(203-x)/97=(205-x)/95+3
bài 2: giải các phương trình sau:
a. x -23/24 +x-23/25 = x -23/26 +x - 23/27
b. (x +2/98 +1) +(x +3/97 +1)=(x +4/96 +1) +(x +5/95 +1)
c. x+1/2004 + x+2/2003= x+3/2002 +x+4 /2001
d. 201 -x/99 + 203 -x/97 +205 -x/95 +3 =0
Giải các phương trình sau:
a) \(\frac{201-x}{99}+\frac{203-x}{97}=\frac{205-x}{95}+3\)
b) \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)
Bất phương trình là sao hả bạn? Có dấu ''='' à?
Giải phương trình sau:
a) \(\frac{201-x}{99}+\frac{203-x}{97}=\frac{205-x}{95}+3\)
b) \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)
2 -x/2002 + 1 -1 = 1-x/2003 + 1 - x/2004 + 1
=> 2004 - x/ 2002 = 2004 - x/ 2003 + 2004 -x/2004
=> (2004 -x) ( 1/2002-1/2003-1/2004)
ta thấy ( 1/2002-1/2003-1/2004) # 0
=> 2004 -x = 0 => x = 2004
Giải các phương trình sau :
a) \(\dfrac{201-x}{99}\) + \(\dfrac{203-x}{97}\) = \(\dfrac{205-x}{95}\) + 3 = 0
b) \(\dfrac{2-x}{2002}\) - 1 = \(\dfrac{1-x}{2003}\) - \(\dfrac{x}{2004}\)
a)\(\dfrac{201-x}{99}+\dfrac{203-x}{97}=\dfrac{205-x}{95}+3=0\)
<=>\(\left(\dfrac{201-x}{99}+1\right)+\left(\dfrac{203-x}{97}+1\right)+\left(\dfrac{205-x}{95}+1\right)=0\)
<=>\(\dfrac{201-x+99}{99}+\dfrac{203-x+97}{97}=\dfrac{205-x+95}{95}=0\)
<=> \(\dfrac{300-x}{99}+\dfrac{300-x}{97}=\dfrac{300-x}{95}=0\)
<=> \(\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)
<=> 300 - x = 0
<=> x = 300
b) \(\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)
<=> \(\dfrac{2-x}{2002}+1=\left(\dfrac{1-x}{2003}+1\right)+\left(\dfrac{x}{2004}+1\right)\){Cộng cả hai vế của phương trình với 2}
<=> \(\dfrac{2-x+2002}{2002}=\dfrac{1-x+2003}{2003}+\dfrac{-x+2004}{2004}\)
<=> \(\dfrac{2004-x}{2002}=\dfrac{2004-x}{2003}+\dfrac{2004-x}{2004}\)
<=> \(\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)
<=> \(\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)=0\)
<=> 2004 - x = 0
<=> x = 2004.
b) \(\dfrac{2-x}{2002}+\dfrac{x}{2004}-1=\dfrac{1-x}{2003}\)
\(\Leftrightarrow\dfrac{2-x}{2002}+1+\dfrac{x}{2004}-1=\dfrac{1-x}{2003}+1\)( cộng 2 vế cho 1)
\(\Leftrightarrow\dfrac{2-x+2002}{2002}+\dfrac{x-2004}{2004}=\dfrac{1-x+2003}{2003}\)
\(\Leftrightarrow\dfrac{2004-x}{2002}+\dfrac{x-2004}{2004}=\dfrac{2004-x}{2003}\)
\(\Leftrightarrow-\dfrac{x-2004}{2002}+\dfrac{x-2004}{2004}+\dfrac{x-2004}{2003}=0\)
\(\Leftrightarrow\left(x-2004\right)\left(\dfrac{-1}{2002}+\dfrac{1}{2004}+\dfrac{1}{2003}\right)=0\)
\(\Rightarrow x=2004\) do \(\left(\dfrac{-1}{2002}+\dfrac{1}{2004}+\dfrac{1}{2003}\ne0\right)\)
Không làm tính hãy tìm a trong các phép tính sau:
a) 95 x (a-75)=95×(100-75)
b) 2003+a×15=2003+10×3×5
a)95*(100-75)=95*(100-75) b)2003+10*15=2003+10*3*5
A) 95.(a-75)=95.(100-75)
=>a-75=100-75
vậy a =100
B) 2003+a.15=2003.10.3.5
a.15=10.3.5
xl bạn chưa xong
a.15=10.(3.5)
a.15=10.15
vậy a=10