Tìm x, y thuộc Z biết
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
tìm x,y thuộc z biết
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\frac{5}{x}=\frac{1-2y}{8}\)
\(\Rightarrow5.8=x.\left(1-2y\right)\)
\(\Rightarrow40=x.\left(1-2y\right)\)
Vì 1-2y là số lẻ nên \(1-2y\in\left\{1;5;-1;-5\right\}\)
Ta có bảng:
1-2y | 1 | 5 | -1 | -5 |
2y | 0 | -4 | 2 | -6 |
y | 0 | -2 | 1 | -3 |
x | 40 | 8 | -40 | -8 |
Tìm x;y thuộc N :
25 - y2=8(x - 2009)2
Tìm x thuộc Z biết:
a)\(2x+\frac{1}{7}=\frac{1}{y}\)
b)\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
c)\(\frac{x}{8}-\frac{1}{y}=\frac{1}{4}\)
1. Tìm x,y thuộc Z biết:
a,\(\frac{x}{7}=\frac{9}{y}\)và x > y
b,\(\frac{-2}{x}=\frac{y}{5}\)và x<0<,y.
2.Tìm x,y thuộc Z biết:
\(\frac{x-4}{y-5}=\frac{4}{3}\)và x - y =5
a)ta có xy=7*9=7*3*3
vậy x =9;21 , y=7;3
b) xy=-2*5
mà x<0<y
nên x=-2 ,y=5
c)x-y=5 hay x=y+5
\(\frac{y+5+4}{y-5}=\frac{4}{3}\Rightarrow3y+27=4y-20\Rightarrow y=47\Rightarrow x=52\)
câu c mk nhầm đề sr bạn nha
\(\frac{y+5-4}{y-5}=\frac{4}{3}\Rightarrow3y+3=4y-5\Rightarrow y=8\Rightarrow x=13\)
Tìm x , y thuộc Z biết \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\Leftrightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\Leftrightarrow\frac{5}{x}=\frac{1-2y}{8}\)
\(\Leftrightarrow x\left(1-2y\right)=40\) Ta có : \(x;1-2y\inƯ\left(40\right)=\left\{\pm1;\pm2;\pm4;...;\pm40\right\}\)
Ta lập bảng :
x | 1 | -1 | 2 | -2 | 4 | -4 | -40 | 40 |
1 - 2y | 40 | -40 | 20 | -20 | 10 | -10 | -1 | 1 |
x | 1 | -1 | 2 | -2 | 4 | -4 | -40 | 40 |
y | 39/2 | 41/2 | -19/2 | 21/2 | -9/2 | 11/2 | 1 | 0 |
chỗ ''...'' còn nhiều t ko kẻ hết nên t kẻ vậy, ai thắc mắc hỏi t vì t cx ko tiện giải thick =))
Ta có: \(\frac{5}{x}+\frac{y}{4}=\frac{20+xy}{4x}=\frac{1}{8}\) (qui đồng)
=> \(160+8xy=4x\)
=> \(160=4x-8xy\)
=> \(160=4x-8xy=4x\left(1-2y\right)\)
=> \(40x=1-2y\)
Vì 40x là số chẵn, 1-2y là số lẻ nên không tìm được x,y nguyên thõa mãn
Ta có : \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\frac{5}{x}=\frac{1}{8}-\frac{2y}{8}\)
\(\frac{5}{x}=1-\frac{2y}{8}\)
\(\Rightarrow x.\left(1-2y\right)=40\)
\(\Rightarrow1-2y\)thuộc ước của 40
Mà \(1-2y\)là số lẻ
nên ta có bảng giá trị :
\(1-2y=1\) | \(5\) | \(-1\) | \(-5\) |
\(x=40\) | \(8\) | \(-40\) | \(-8\) |
\(y=0\) | \(-2\) | \(1\) | \(3\) |
Tìm x , y thuộc Z biết\(\frac{1}{8}< \frac{x}{12}< \frac{y}{9}< \frac{1}{4}\)
\(\frac{1}{8}< \frac{x}{12}< \frac{y}{9}< \frac{1}{4}\)
=> x = 2, y = 45
Bài này có thể thử chọn
tìm x y z thuộc z biết :
\(a,\frac{-x}{4}=\frac{-2}{x}\)
\(b,\frac{-4}{8}=\frac{x}{-10}=\frac{-7}{y}=\frac{7}{21}\)
\(c,\frac{12}{-6}=\frac{x}{5}=\frac{-y}{3}=\frac{Z}{17}\)
-xx=-2x4
-xx=-8
xx=8
x2=8
x= căn bâc của 8
a; \(\dfrac{-x}{4}\) = \(\dfrac{-2}{x}\)
-\(x.x\) = -2.4
-\(x^2\) = -8
\(x^2\) = 8
\(\left[{}\begin{matrix}x=-\sqrt{8}\\x=\sqrt{8}\end{matrix}\right.\)
Vậy \(x\in\) {-\(\sqrt{8}\); \(\sqrt{8}\)}
b; \(\dfrac{-4}{8}\) = \(\dfrac{x}{-10}\) = \(\dfrac{-7}{y}\) = \(\dfrac{7}{21}\)
\(-\dfrac{4}{8}\) = - \(\dfrac{1}{2}\) ≠ \(\dfrac{1}{3}\) = \(\dfrac{7}{21}\)
Vậy pt vô nghiệm
Tìm x; y thuộc Z biết : \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{5}{x}\) + \(\frac{y}{4}\) = \(\frac{1}{8}\)
<=> \(\frac{5}{x}\)= \(\frac{1}{8}\) - \(\frac{y}{4}\)= \(\frac{1}{8}\)-\(\frac{2y}{8}\)= \(\frac{1-2y}{8}\)
=> x.(1-2y) = 5.8 =40
Tới đây r, cn tí nữa bn tự giải tiếp nhé !
1. Tìm các số x, y, z biết rằng:\(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\) và x + y - z = 69
2. Tìm các số x, y, z biết rằng: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z - 3x - 4y = 50
3. Tìm các số x, y, z, t biết rằng:
x: y: z : t = 15: 7 :3 :1 và x - y + z - t = 10
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
Tìm x, y, z thuộc N* biết:
\(\frac{x}{5}+\frac{y}{6}+\frac{z}{8}=\frac{113}{120}\)