Tìm GTLN và GTNN của bt:
\(\frac{x^2++1}{x^2-x+1}\)
Mk cần gấp cả giải chi tiết nha mn.
Tìm GTLN,GTNN của A=\(\frac{2x+1}{x^2+2}\)
GIẢI GIÚP NHA ĐANG CẦN GẤP !!!!!!
\(A=\frac{2x+1}{x^2+2}\)
Ta có: \(\hept{\begin{cases}2x+1\ge1\\x^2+2\ge2\end{cases}}\)
Để 2x+ 1 nhỏ nhất => 2x+ 1=1
x2+ 2 nhỏ nhất => x2+ 2= 2
\(\Rightarrow A=\frac{0+1}{0+1}=\frac{1}{2}=0,5\)
Vậy GTNN của A= 0,5
Ax^2+2A=2x+1
\(\Leftrightarrow Ax^2-2x+2A-1=1\)(*) A=0 <=>-2x-1=0=> luon co nghiem x
\(A\ne0\)(*) co nghiem can
delta(x)=1-A.(2a-1)>=0
\(\Leftrightarrow1-2a^2+a\ge0\Leftrightarrow2a^2-a-1\le0\Leftrightarrow\left(a-1\right)\left(a+\frac{1}{2}\right)\le0\)
\(-\frac{1}{2}\le A\le1\)
A = \(\frac{2x+1}{x^2+2}\)= \(\frac{x^2+2-x^2+2x-1}{x^2+2}\)= \(\frac{x^2+2}{x^2+2}-\frac{x^2-2x+1}{x^2+2}\)= \(1-\frac{\left(x-1\right)^2}{x^2+2}\)
Vì \(\frac{\left(x-1\right)^2}{x^2+2}\)\(\ge\) 0 với mọi x nên để A có GTLN \(\Rightarrow\) \(\frac{\left(x-1\right)^2}{x^2+2}\)=0 \(\Rightarrow\)\(\left(x-1\right)^2=0\Rightarrow x-1=0\Leftrightarrow x=1\)
Tìm GTLN và GTNN của biểu thức A = \(\frac{x^2}{x^4+x^2+1}\)
Mk cần gấp ! Cảm ơn mọi người nhiều ạ !
Max : với x = 0 thì \(A=\frac{x^2}{x^4+x^2+1}=0\)
với x khác 0 thì x4 + 1 \(\ge\)2x2 > 0 nên x4 + x2 + 1 \(\ge\)3x2
\(\Rightarrow\)\(A=\frac{x^2}{x^4+x^2+1}\le\frac{x^2}{3x^2}=\frac{1}{3}\)
Vậy max A = \(\frac{1}{3}\)\(\Leftrightarrow\)x = 1 hoặc -1
Min : Ta có : x4 + x2 + 1 = ( x2+ 1 )2 - x2 = ( x2 - x + 1 ) ( x2 + x + 1 ) > 0
\(\Rightarrow\)\(A\ge0\)( vì x2 \(\ge\)0 )
Cho 2 biểu thức:
\(A=\frac{2\sqrt{x}+1}{x+\sqrt{x}+1}\&P=\frac{2\sqrt{x}+1}{\sqrt{x}+1}.\)
Tìm GTLN của biểu thức \(M=\frac{A}{P}.\)
Giúp mk giải nha m.n! mk đang cần gấp lắm! THANKS!!!
Cho x,y thỏa mãn x2+y2=1
Tìm GTLN và GTNN của x6+y6
Giải chi tiết nhé !!!!!!
Đặt \(x^2=a;y^2=b\left(a,b\ge0\right)\)
Ta có
\(x^6+y^6=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=a^2-ab+b^2\)
\(\ge a^2-\frac{a^2+b^2}{2}+b^2=\frac{a^2+b^2}{2}\ge\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)
Vậy Min = 1/4 khi \(x=y=\frac{1}{\sqrt{2}}\)
Ta có
+)\(x^2+y^2=1\leftrightarrow\left(x+y\right)^2-2xy=1\)
+) Đặt x+y=S, xy = P, ta được: \(S^2-2P=1\)
+)\(x^6+y^6=\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)=x^4-x^2y^2+y^4=\left(x^2+y^2\right)^2-3x^2y^2\)
\(=\left[\left(x+y\right)^2-2xy\right]^2-3x^2y^2=\left(S^2-2P\right)^2-3P^2=S^4-4S^2P+4P^2-3P^2\)
\(=S^4-4S^2P+P^2=\left(2P+1\right)^2-4\left(2P+1\right)P+P^2\)
\(=4P^2+4P+1-8P^2-4P+P^2=-3P^2+1\le1\)
Dấu = xảy ra khi \(\hept{\begin{cases}P=0\\S=1\end{cases}}\), khi đó x=1, y=0 hoặc x=0, y=1
Tìm GTLN,GTNN của biểu thức sau:
a)-x^2+9x-12
b)2x^2+10x-1
c)(2x+6)(x-1)
d)3x-2x^2
mk đang cần gấp nên mn giúp mk nha.cảm ơn mn trước
a) Đặt \(A=-x^2+9x-12\)
\(-A=x^2-9x+12\)
\(-A=\left(x^2-9x+\frac{81}{4}\right)-\frac{33}{4}\)
\(-A=\left(x-\frac{9}{2}\right)^2-\frac{33}{4}\)
Mà \(\left(x-\frac{9}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge-\frac{33}{4}\Leftrightarrow A\le\frac{33}{4}\)
Dấu "=" xảy ra khi : \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)
Vậy \(A_{Max}=\frac{33}{4}\Leftrightarrow x=\frac{9}{2}\)
b) Đặt \(B=2x^2+10x-1\)
\(B=2\left(x^2+5x+\frac{25}{4}\right)-\frac{29}{4}\)
\(B=2\left(x+\frac{5}{2}\right)^2-\frac{29}{4}\)
Mà \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow B\ge-\frac{29}{4}\)
Dấu "=" xảy ra khi : \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy \(B_{Min}=-\frac{29}{4}\Leftrightarrow x=-\frac{5}{2}\)
c) Đặt \(C=\left(2x+6\right)\left(x-1\right)\)
\(C=2x^2-2x+6x-6\)
\(C=2x^2+4x-6\)
\(C=2\left(x^2+2x+1\right)-8\)
\(C=2\left(x+1\right)^2-8\)
Mà \(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow C\ge-8\)
Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)
Vậy \(C_{Min}=-8\Leftrightarrow x=-1\)
d) Đặt \(D=3x-2x^2\)
\(-2D=4x^2-6x\)
\(-2D=\left(4x^2-6x+\frac{9}{4}\right)-\frac{9}{4}\)
\(-2D=\left(2x-\frac{3}{2}\right)^2-\frac{9}{4}\)
Mà \(\left(2x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-2D\ge-\frac{9}{4}\)
\(\Leftrightarrow D\le\frac{9}{8}\)
Dấu "=" xảy ra khi : \(2x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{4}\)
Vậy \(D_{Max}=\frac{9}{8}\Leftrightarrow x=\frac{3}{4}\)
Đang cần gấp:
Tìm x để M đạt GTNN: M = |x+1| + |x+2| + |x+3| + |x+4|+|x+5| ( giải chi tiết )
Tìm GTLN của BT P=√(x-2)/x
Giải chi tiết giúp mk với!
\(P=\dfrac{\sqrt{x-2}}{x}\)ĐK:\(x\ne0\)
\(P^2=\dfrac{x-2}{x^2}\)
\(\Rightarrow P^2x^2-x+2=0\)
Để pt có ng0 thì:
\(1^2-8P^2\ge0\)
\(\Leftrightarrow P\le\dfrac{1}{2\sqrt{2}}\)
Vậy P max =\(\dfrac{1}{2\sqrt{2}}.\)
Tìm GTNN của biểu thức :
\(C=\left(x+1\right)^2+\left(y-1\right)^2-10\)
Tìm GTLN của biểu thức :
\(D=\frac{5}{\left(2x-1\right)^2+3}\)
Giúp em với ạ, em cần gấp, có lời giải chi tiết đầy đủ nhé, em cảm ơn ạ!
(x+1)^2>=0 và (y-1)^2>=0
=>C>=-10
Dấu = xảy ra khi x+1=0,y-1=0
=>x=-1,y=1
Vậy C=-10 khi x=-1,y=1
k cho mk nha
\(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{cases}\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2-10\ge-10}\)
Dấu ''='' xảy ra <=> x = -1 ; y = 1
D lón nhất <=> (2x-1)^2+3 nhỏ nhất
Vì (2x-1)^2>=0
=>(2x-1)^2+3>=3
Dấu = xảy ra khi 2x-1=0
=>2x=1=>x=1/2
k cho mk nha
giúp em cách giải chi tiết 1 số bài toán sau nhè mn!
Bài1: Tìm GTLN hoặc GTNN của biểu thức:
a) B=1/3 - [2x-5]
b)C=3[x+1]- 1/2