1/1+2 + 1/1+2+3 + 1/1+2+3+4+.....+1/1+2+3+.....+1009
Chứng tỏ 1/2^2 + 1/3^2 + 1/4^2 + v.v + 1/1009^2 < 3/4
Chứng tỏ 1/22 + 1/32 + 1/42 + v.v + 1/10092 < 3/4
Ta có: \(\frac{1}{2^2}=\frac{1}{4}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
................
\(\frac{1}{1009^2}< \frac{1}{1008.1009}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{1009^2}< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1008.1009}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1009^2}< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1008}-\frac{1}{1009}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1009^2}< \frac{1}{4}+\frac{1}{2}-\frac{1}{1009}=\frac{3}{4}-\frac{1}{1009}< \frac{3}{4}\)(đpcm)
1/2×3 + 1/ 3×4 + 1/4×5 + ........ + 1/ X- 1×X= 504/ 1009
Tìm X
Sửa đề :
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x}+\frac{1}{x\left(x+1\right)}=\frac{504}{1009}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{504}{1009}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{504}{1009}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{504}{1009}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2018}\)
\(\Leftrightarrow x=2018-1\)
\(\Leftrightarrow x=2017\)
Vậy ...
Sửa đề \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{504}{1009}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{504}{1009}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{504}{1009}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{504}{1009}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2018}\)
\(\Leftrightarrow x=2017\)
Bài 1 : Tính giá trị biểu thức sau :
A= ( 1/7 + 1/23 - 1/1009 ) : ( 1/23 + 1/7 - 1/1009 + 1/7 . 1/23 . 1/1009 ) + 1 : ( 30 . 1009 - 160 )
Bài 2 : Tìm số tự nhiên x biết :
a) ( 1/1.2.3 + 1/2.3.4 + .... + 1/8.9.10 ) b) 5^x = 125 c) 3^2x = 81 d) 5^2x-3 - 2.5^2 = 5^2 .3
So sánh A= 1009/2020 và B=(1-1/2²)(1-1/3²)(1-1/4²)...(1-1/100²)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}......\frac{99^2}{99.100}\)
\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)......\left(1+\frac{1}{100}\right)\)
\(\left(\frac{1}{7}+\frac{1}{23}+\frac{1}{1009}\right):\left(\frac{1}{23}+\frac{1}{7}-\frac{1}{1009}+\frac{1}{7}.\frac{1}{23}.\frac{1}{1009}\right)+1:\left(30.1009-160\right)\)
đề bài tính nhanh
Ta có :
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{99^2}{99.100}\)
\(=\)\(\frac{1^2.2^2.3^2.....99^2}{1.2.2.3.3.4.....99.100}\)
\(=\)\(\frac{1^2.2^2.3^2.....99^2}{1^2.2^2.3^2.4^2.....99^2}.\frac{1}{100}\)
\(=\)\(\frac{1}{100}\)
\(A=\dfrac{2016^2+1^2}{2016\cdot1}+\dfrac{2015^2+2^2}{2015\cdot1}+\dfrac{2014^2+3^2}{2014\cdot3}+...+\dfrac{1009^2+1008^2}{1009\cdot1008}\)
và \(B=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}\)Tìm A/B
A=(1/1009+1/1010+...+1/2016+1/2017)(1-1/2+1/3-1/4+...+1/2015-1/2016)
A=(1/1009+1/1010+...+1/2016+1/2017).(1-1/2+1/3-1/4+...+1/2015-1/2016)