a.x^2+y^2=2017
b.x^2+y^2=2017^2
Tìm x,y nguyên dương
a.x^2+y^2=2017
b.x^2+y^2=2017^2
Tìm x,y nguyên dương
M=5a.x^2.y^2+(-1/2.a.x^2.y^2)+4.a.x^2.y^2+(-x^2.y^2)
a) tính tổng
b) với giá trị nào của a thì M > bằng 0 với mọi xy
c) với giá trị nào của a thì M không dương với mọi xy
d) cho a= 2 tìm cặp số nguyên (xy)
Cho x,y,z là 3 số dương thỏa mãn điều kiện x2+y2+z2=2
Tìm GTLN của biểu thức:
\(P=\dfrac{2}{x^2+y^2}+\dfrac{2}{y^2+z^2}+\dfrac{2}{z^2+x^2}-\dfrac{x^3+y^3+z^3}{2xyz}\)
Lời giải:Vì $x^2+y^2+z^2=2$ nên:
$P=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}-\frac{x^3+y^3+z^3}{2xyz}$
$=3+\frac{x^2}{y^2+z^2}+\frac{y^2}{x^2+z^2}+\frac{z^2}{x^2+y^2}-\frac{x^3+y^3+z^3}{2xyz}$
$\leq 3+\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}-\frac{x^3+y^3+z^3}{2xyz}$
(theo BĐT AM-GM)
$=3+\frac{x^3+y^3+z^3}{2xyz}-\frac{x^3+y^3+z^3}{2xyz}=3$
Vậy $P_{\max}=3$
Dấu "=" xảy ra khi $x=y=z=\sqrt{\frac{2}{3}}$
Tìm x,y,z nguyên dương sao cho \(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}\)thuộc Q và \(\left(x^2+y^2+z^2\right)\)là số nguyên tố
Tìm các số nguyên dương x,y,z thỏa mãn đồng thời hai điều kiện sau \(\frac{x-y\sqrt{2017}}{y-z\sqrt{2017}}\)là số hữu tỉ và \(x^2+y^2+z^2\)là số nguyên tố
cho x,y là các số nguyên dương thỏa mãn x+y=2017 tính giá trị nhỏ nhất .lớn nhất của biểu thức P=x(x^2+y)+y(y^2+x)
Tìm x,y,z nguyên dương sao cho \(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}\in Q\)và \(\left(x^2+y^2+z^2\right)\)là số nguyên tố
Lần trước đúng là em thiếu đề ạ ;;-;;
\(\frac{x-y\sqrt{2017}}{y-z\sqrt{2017}}\)
đề thế này còn tạm chấp nhận :v
Từ \(x+y+z=2017\Rightarrow\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z=\frac{x+y}{xy}+\frac{x+y}{z+''x+y+z''}=0\Rightarrow''x+y''''\frac{1}{xy}+\frac{1}{xz+yz+z^2}=0\)
\(\Rightarrow\frac{''x+y''''y+z''''z+x''}{xyz''x+y+z''}=0\Rightarrow''x+y''''y+z''''z+x''=0\) Do x,y,z khác 0
Mà \(x+y+z=2017\)
\(\Rightarrow x+y=0\Rightarrow x=2017\)
hoặc \(y+z=0\Rightarrow x=2017\)
hoặc \(x+z=0\Rightarrow x=2017\)
x^2+117=(2y+1)^2
tìm các cặp số nguyên (x;y)
Lời giải:
$117=(2y+1)^2-x^2=(2y+1-x)(2y+1+x)$
Vì $x,y$ nguyên nên $2y+1-x, 2y+1+x$ nguyên. Do đó ta có bảng sau:
cho x,y nguyên dương tm 0<x<y<2018. có bao nhiêu cặp số (x,y) tm x2+20182=y2+20172