Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Alice Sophia
Xem chi tiết
quynh anh
Xem chi tiết
ko
8 tháng 3 2017 lúc 21:03

các bạn lên google xem xxx nhé

Dương Thanh Ngân
Xem chi tiết
Akai Haruma
25 tháng 1 2021 lúc 10:48

Lời giải:Vì $x^2+y^2+z^2=2$ nên:

$P=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}-\frac{x^3+y^3+z^3}{2xyz}$

$=3+\frac{x^2}{y^2+z^2}+\frac{y^2}{x^2+z^2}+\frac{z^2}{x^2+y^2}-\frac{x^3+y^3+z^3}{2xyz}$

$\leq 3+\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}-\frac{x^3+y^3+z^3}{2xyz}$

(theo BĐT AM-GM)

$=3+\frac{x^3+y^3+z^3}{2xyz}-\frac{x^3+y^3+z^3}{2xyz}=3$

Vậy $P_{\max}=3$

Dấu "=" xảy ra khi $x=y=z=\sqrt{\frac{2}{3}}$

 

kaitouzoe
Xem chi tiết
Witch Rose
7 tháng 7 2017 lúc 21:53

thiếu đề!!

Thân thi thu
Xem chi tiết
nguyễn thị phương loan
Xem chi tiết
kaitouzoe
Xem chi tiết
Rau
7 tháng 7 2017 lúc 23:26

\(\frac{x-y\sqrt{2017}}{y-z\sqrt{2017}}\)
đề thế này còn tạm chấp nhận :v

Le Nhat Phuong
8 tháng 7 2017 lúc 8:13

Từ \(x+y+z=2017\Rightarrow\)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z=\frac{x+y}{xy}+\frac{x+y}{z+''x+y+z''}=0\Rightarrow''x+y''''\frac{1}{xy}+\frac{1}{xz+yz+z^2}=0\)

\(\Rightarrow\frac{''x+y''''y+z''''z+x''}{xyz''x+y+z''}=0\Rightarrow''x+y''''y+z''''z+x''=0\) Do x,y,z khác 0

Mà \(x+y+z=2017\)

\(\Rightarrow x+y=0\Rightarrow x=2017\)

hoặc \(y+z=0\Rightarrow x=2017\)

hoặc \(x+z=0\Rightarrow x=2017\)

Tiến Đặng
Xem chi tiết
Akai Haruma
30 tháng 4 2023 lúc 19:20

Lời giải:
$117=(2y+1)^2-x^2=(2y+1-x)(2y+1+x)$

Vì $x,y$ nguyên nên $2y+1-x, 2y+1+x$ nguyên. Do đó ta có bảng sau:

shunnokeshi
Xem chi tiết