Cho x(x+14)(x+2)(x+3)(...)(x+2017)=2017(với x>0). Chứng minh rằng x<\(\frac{1}{2017!}\)
Cho biết: x(x+1)(x+2)(x+3)....(x+2017)=2017. Tìm x (x>0)chứng tỏ rằng x> \(\frac{1}{2016!}\)
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\cdot\cdot\cdot\left(x+2017\right)=2017\) \(\left(\text{Có }\left(2017-1\right)\text{ : }1+1+1=2018\right)\)
\(\text{Vì }\text{tích trên là tích của 2018 số hạng mà có kết quả = 2017 là số nguyên}>0\text{ }\Rightarrow\text{ }x>0\left(x\in Z\right)\)
\(\text{Mà }\frac{1}{2016!}< 1\)
\(\text{Và số nguyên bé nhất lớn hơn 0 là 1 }\)
\(\Rightarrow\text{ }x>\frac{1}{2016!}\)
\(\text{Mình nghĩ chắc là sai rồi ! Mình cũng đang bận !}\)
Cho hai đa thức với hệ số nguyên f1(x), f2(x) thỏa mãn f(x)= f1(x3) + x.f2(x3) chia hết cho x2+x+1. Chứng minh rằng ƯCLN(f1(2017),f2(2017)) lớn hơn hoặc bằng 2016
cho hai đa thức với hệ số nguyên f1(x), f2(x) thoả mãn \(..f\left(x\right)=f_1\left(x^3\right)+x\cdot f_2\left(x^3\right)..\)chia hết cho \(^{x^2+x+1}\).
Chứng minh rằng \(ƯSCLN\left(f1\left(2017\right),f2\left(2017\right)\right)\ge2016...???\)
THẦY MÌNH GỢI Ý nè chứng minh f1(x) và f2(x) chia hết cho x-1 dựa vào x^3-1 chia hết cho x-1
từ đó suy ra f1(2017) và f2(2017) chia hết cho 2016 => đpcm CHỨNG MINH HỘ NHA MK KO BIẾT LÀM
bài này khó khinh lên đc mình bó tay
trước tiên ta cần chứng minh một bài toán phụ:f(x) là 1 đa thức với hệ số nguyên:f(x)=anxn+an-1xn-1+....+a1x+a0
a,b là 2 số nguyên khác nhau,chứng minh f(a)-f(b) chia hết cho (a-b)
lấy f(a)-f(b) rồi ghép các hạng tử có cùng bậc là ra nka bn
áp dung:f(x)=f1(x3)-f1(1) + x.f2(X3) -x.f2(1)+f1(1)+x.f2(1) mà f1(X3)-f1(1) chia hết cho x^3-1 nên chia hết cho x2+x+1,tương tự với f2,theo giả thiết thì f(x) chia hết cho x2 +x+1 nên f1(1)+x.f2(1) chia hết cho x2 +x+1 mà f1(1)+x.f2(1) có bậc bé hơn hoặc bằng 1 nên f1(1) + xf2(1)=0
SUY RA:f1(1)=f2(1)=0
theo định lí bezout suy ra f1(x) chia hết cho x-1 và f2(x) chia hết cho x-1
bài toán đã dc giải guyết,trong lời giải có thể có chút sai sót và hơi khó hiểu nên mong các bạn góp ý và cho mình
Cho các đa thức P(x)= x3+ax2+bx+c;Q(x)=x2+2016x+2017 thỏa mãn P(x) =0 có 3 nghiệm phân biệt và P(Q(x))=0 vô nghiệm
Chứng minh P(2017)>10086
câu hỏi rất hay
cố lên nhé
cố gắng làm nhé sau khi tự làm bạn sẽ lên trình độ đấy
cố lên
1.Cho đa thức f(x)=ax2 + bx + c với a, b, c là các hệ số nguyên. Chứng minh: f(x) + f(-x) ⋮ 2 với mọi số nguyên x .
2.Cho đa thức P(x)=ax+b (a, b ∈ Z;a ≠0). Chứng minh rằng:/P(2018) - P(1)/ ≥ 2017
3.Cho đa thức f(x) =2x2 + 3x +1.Chứng tỏ f(2n) - f(n) ⋮ 3.
4.Cho đa thức f(x) = 5x+1. Với 2 số a và b (a<b).
5.Cho đa thức f(x) = ax + b với a≠0, a ϵ Z. Chứng tỏ rằng /f (2017) - f(1)/ ≥ 2016.
giúp mình với!!!
Chứng minh rằng : A= (x+2016).(x+2017) chia hết cho 2,với mọi x thuộc N
ta có x+2016 và x+2017 là 2 số liên tiếp
=> 1 trong 2 số có 1 số chia hết cho 2
nên A=(x+2016)(x+2017) chia hết cho 2
chứng minh rằng X^2018 + X^2017+1 chia hết cho x^2 + x + 1
Tách x2018 + x2017 =x2016.(x2+x)
Rồi tự làm típ
bài 1:thực hiện phép tính
a,21*92,3+210*7,7
b,x*(x-1)-y*(1-x)tại x=2001 và y=1999
bài 2:tìm x
4x*(x-2017)-x+2017=0
bài 3:chứng minh rằng
43n+1-42nchia hết cho 42(n thuộc N)
mọi người giúp em với ạ!!!!em cảm ơn!!!
Chứng minh rằng đa thức P(x)= x^2017+x^2+1 chia hết cho đa thức Q(x)= x^2+x+1
\(P\left(x\right)=x^{2017}+x^2+1\)
\(=\left(x^{2017}-x\right)+\left(x^2+x+1\right)\)
\(=x\left(x^{2016}-1\right)+\left(x^2+x+1\right)\)
\(=x\left[\left(x^3\right)^{2016}-1\right]+\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)A+\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)A+\left(x^2+x+1\right)\)
\(A=\left(x^2+x+1\right)\left[x\left(x-1\right)A+1\right]⋮x^2+x+1\) (đpcm)