Cho X2016 . f(x-2016) = (x-2017). f(x). Chứng minh đa thức f(x) có ít nhất 2 nghiệm
b. chứng minh rằng đa thức
(x^2 - 4) * f(x) = (x-1) * f(x+1) có ít nhất ba nghiệm
c. cho đa thức f(x) thoả mãn
x * f(x+2) = (x^2 - 9) * f(x)
cmnr: Đa thức f(x) = 0 có ít nhất 3 nghiệm
cho đa thức f(x) sao cho:(x^2+x-2).f(x)=f(x+4).chứng minh f(x) có ít nhất 2 nghiệm.
a) Cho f(x) thỏa mãn: x.f(x-2) = (x-4) f(x)
Chứng minh rằng: Đa thức có ít nhất 2 nghiệm
b) Biết (x-1) . f(x) = (x+4) . f(x+8) với mọi x
Chứng minh rằng: f(x) có ít nhất 2 nghiệm
Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
Thay x = 0 vào x . f(x + 1) = (x + 2) . f(x) được 0 . f(0 + 1) = 2 . f(0) hay f(0) = 0
Suy ra x = 0 là một nghiệm của f(x)
Thay x = -2 vào x . f(x + 1) = (x + 2) . f(x) được (-2) . f(-1) = 0 . f(-2) hay f(-1) = 0
Suy ra x = -1 là một nghiệm của f(x)
vậy đa thức f(x) có ít nhất 2 nghiệm là 0 và -1
Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
Khi x=0 thì ta có: \(0\cdot f\left(0+1\right)=\left(0+2\right)\cdot f\left(0\right)\)
=>\(2\cdot f\left(0\right)=0\)
=>f(0)=0
=>x=0 là nghiệm của f(x)(1)
Khi x=-2 thì ta có;
\(-2\cdot f\left(-2+1\right)=\left(-2+2\right)\cdot f\left(-2\right)\)
=>\(-2\cdot f\left(-1\right)=0\)
=>f(-1)=0
=>x=-1 là nghiệm của f(x)(2)
Từ (1),(2) suy ra f(x) có ít nhất 2 nghiệm
cho:(x-2).f(x+1)=(x^2-9).f(x) .Chứng minh đa thức f(x) có ít nhất 4 nghiệm
cho:(x-2).f(x+1)=(x^2-9).f(x) .Chứng minh đa thức f(x) có ít nhất 4 nghiệm
cho:(x-2).f(x+1)=(x^2-9).f(x) .Chứng minh đa thức f(x) có ít nhất 4 nghiệm
cho:(x-2).f(x+1)=(x^2-9).f(x) .Chứng minh đa thức f(x) có ít nhất 4 nghiệm