Chứng tỏ rằng không tồn tại 3 số nguyên tố x;y;z thỏa mãn:
x2+y3=z4
chứng tỏ rằng ko tồn tại 3 số nguyên tố x , y , z thỏa mãn : x2+y3=z4
Chứng tỏ rằng không tồn tại các số nguyên x, y, z sao cho:
| x – 2y | + | 4y – 5z | + | z – 3x | = 2011
Ta có: | a | = a nếu a ≥ 0 và -a nếu a < 0, do đó |a| + a = 2a nếu a ≥ 0 và =0 nếu a < 0
Do vậy, nếu a ∈ Z, thì | a | + a là số chẵn
Áp dụng điều này, với x, y, z ∈ Z thì:
| x – 2y | + x – 2y + | 4y – 5z | + 4y – 5z + | z – 3x | + z – 3x là số chẵn
⇒ (| x – 2y | + | 4y – 5z | + | z – 3x |) + (-2x + 2y – 4z) là số chẵn
⇒ | x – 2y | + | 4y – 5z | + | z – 3x | là số chẵn
Mà 2011 là số lẻ. Vậy không tồn tại các số nguyên x, y, z sao cho:
| x – 2y | + | 4y – 5z | + | z – 3x | = 2011
Chứng tỏ rằng không tồn tại các số nguyên x, y, z sao cho:
| x – 2y | + | 4y – 5z | + | z – 3x | = 2011
Ta có: | a | = a nếu a ≥ 0 và -a nếu a < 0, do đó |a| + a = 2a nếu a ≥ 0 và =0 nếu a < 0
Do vậy, nếu a ∈ Z, thì | a | + a là số chẵn
Áp dụng điều này, với x, y, z ∈ Z thì:
| x – 2y | + x – 2y + | 4y – 5z | + 4y – 5z + | z – 3x | + z – 3x là số chẵn
⇒ (| x – 2y | + | 4y – 5z | + | z – 3x |) + (-2x + 2y – 4z) là số chẵn
⇒ | x – 2y | + | 4y – 5z | + | z – 3x | là số chẵn
Mà 2011 là số lẻ. Vậy không tồn tại các số nguyên x, y, z sao cho:
| x – 2y | + | 4y – 5z | + | z – 3x | = 2011
a) cho a thuộc Z, chứng tỏ rằng a + |a| là số chẵn
b) chứng tỏ rằng không tồn tại các số nguyên x,y,z sao cho: | x - 2y| + |4y - 5z| + |x - 3x| = 2011
a) Xét :
\(a< 0\)\(\Rightarrow|a|=-a\)
\(\Rightarrow a+|a|=a+\left(-a\right)=0\)(là số chẵn)
\(a\ge0\)\(\Rightarrow|a|=a\)
\(\Rightarrow|a|+a=a+a=2a\)(luôn chẵn với mọi a nguyên)
Vậy ta có đpcm
b) Phần b) chỗ dấu giá trị tuyệt đối thứ 3 có phải là z-3x không ạ ?
Gỉa sử tồn tại các số nguyên x,y,z thỏa mãn đề bài .
Ta có : \(\left(x-2y\right)+\left(4y-5z\right)+\left(z-3x\right)=-2x+2y-4z\)(là một số chẵn)
Áp dụng cm ở phần a), ta có:
\(|x-2y|+\left(x-2y\right)+|4y-5z|+\left(4y-5z\right)+|z-3x|+\left(z-3x\right)\)là 1 số chẵn
\(\Rightarrow|x-2y|+|4y-5z|+|z-3x|\)là một số chẵn
Mà \(2011\)là số lẻ
\(\Rightarrow\)Mẫu thuẫn với giả thiết
\(\Rightarrow\)Điều giả sử là sai
\(\Rightarrowđpcm\)
chứng tỏ rằng không tồn tại các số nguyên x,y,z sao cho:
|x - 2y| + |4y - 5z| + |z - 3x| = 2011
Chứng minh rằng không tồn tại 3 số nguyên tố nào p, p+2, p+4, trừ 3,5,7
Lời giải:
Giả sử $p$ không chia hết cho 3. Khi đó do $p$ nguyên tố nên $p$ không chia hết cho 3.
Nếu $p$ chia 3 dư 1. Đặt $p=3k+1$
$\Rightarrow p+2=3k+3=3(k+1)\vdots 3$. Mà $p+2>3$ nên $p+2$ không là số nguyên tố (trái với đề)
Nếu $p$ chia 3 dư 2. Đặt $p=3k+2$
$\Rightarrow p+4=3k+3=3(k+2)\vdots 3$. Mà $p+4>3$ nên $p+4$ không là số nguyên tố (trái với đề)
Vậy $p=3$
chứng minh rằng không tồn tại 3 số lẻ liên tiếp lớn hơn 7 đồng thời là 3 số nguyên tố
vì trong 3 số lẻ lt chắc chắn có 1 số chi hết cho 3
suy ra trong 3 số lẻ lt >7 thì tồn tại 1 trong 3 số chia hết cho 3 và có thương >2
vì tròg 3 số lẻ liên tiếp tồn tại 1 số chia hết cho 3
suy ra 1 trong 3 số lẻ liên tiếp >7 có 1 số chia hết cho 3 và có thương > 1
vậy ko có trường hợp như trong đề bài (dpcm)
chứng tỏ rằng không tồn tại các số nguyên x,y ,z sao cho
|x-2y| +| 4y - 5z | + | z - 3x | =2011
\(\text{Với mọi a}\left(\text{a là số nguyên thì:}\right)|a|\text{ cùng tính chẵn lẻ với a}\)
\(\Rightarrow2011\text{ cùng tính chẵn lẻ với:}x-2y+4y-5z+z-3x=2y-4z-2x=2\left(y-2z-x\right)\text{ là số chẵn}\)
\(\Rightarrow\text{ vô lí}\Rightarrow\text{ điều phải chứng minh}\)
Giả sử tồn tại các số nguyên thỏa x,y,z mãn đề bài
Giả sử \(x⋮2\)
\(\Rightarrow\left|x-2y\right|⋮2\)
\(\Rightarrow\left|4y-5z\right|+\left|z-3x\right|\)lẻ(Vì 2011 lẻ)
Với \(z⋮2\)thì:
\(\Rightarrow\hept{\begin{cases}\left|4y-5z\right|⋮2\\\left|z-3x\right|⋮2\end{cases}}\Rightarrow\left|4y-5z\right|+\left|z-3x\right|⋮2\left(L\right)\)
Với z ko chia hết cho 2 thì hay z lẻ
\(\Rightarrow\hept{\begin{cases}\left|4y-5z\right|\equiv1\left(mod2\right)\\\left|z-3x\right|\equiv1\left(mod2\right)\end{cases}\Rightarrow\left|4y-5z\right|+\left|z-3x\right|⋮2\left(L\right)}\)
Trường hợp x lẻ chứng minh tương tự ta cũng ko tìm được giá trị nguyên của y,z
Vậy ko tồn tại các số nguyên x,y,z thỏa mãn đề bài(đpcm)
Do \(2011>0\)nên \(|x-2y|+|4y-5z|+|z-3x|>0\)
\(\Rightarrow\hept{\begin{cases}|x-2y|=x-2y\\|4y-5z|=4y-5z\\|z-3x|=z-3x\end{cases}}\)
Khi đó, ta có :
\(x-2y+4y-5z+z-3x=2011\)
\(\Leftrightarrow-2x+2y-4z\)\(⋮\)\(2\forall x,y,z\in Z\)
Mà 2011 không chia hết cho 2
Nên không tồn tại các số nguyên \(x,y,z\)thỏa mãn đề bài
Bài 1: chứng minh rằng nếu p là số nguyên tố lẻ thì không tồn tại các số nguyên x,y sao cho 1/p=1/x^2+1/y^2