Cho tam giác ABC nhọn ,A =120độ ,AB=3cm,AC=6cm,Tính độ dài phân giác AD
Cho tam giác abc có góc a bằng 120 độ, ab bằng 3cm, ac bằng 6cm. Tính độ dài đường phân giác ad
Cho tam giác ABC có AB=6 (cm); AC=12 (cm); A= 120độ .Kẻ đường phân giác AD của góc A. Tính độ dài AD.
Áp dụng hàm số cos, ta có: \(BC=\sqrt{6^2+12^2-2.6.12.\cos120^o}\)
\(d_a=\frac{2}{b+c}\sqrt{bc\left(p-a\right)}\)
Đến đây bạn tự làm nhé!
1. Cho tam giác ABC có góc A= 120 độ, AB=3cm, AC=6cm, AD là phân giác. Tính AD
Qua D kẻ DE // AB ( E \(\in\)AB )
Vì AD là phân giác góc A của \(\Delta ABC\):
\(\Rightarrow\)\(\frac{DC}{DB}=\frac{AC}{AB}\)
\(\Rightarrow\) \(\frac{DC}{DB+DC}=\frac{AC}{AB+AC}\)hay \(\frac{DC}{BC}=\frac{6}{3+6}\)\(\Leftrightarrow\)\(\frac{DC}{BC}=\frac{2}{3}\)(1)
Ta có : AB là phân giác góc A \(\Rightarrow\)\(\widehat{A_1}=\widehat{A_2}=\frac{\widehat{BAC}}{2}=\frac{120}{2}=60^0\)
Mà \(\widehat{A_1}=\widehat{D_1}=60^0\)( so le trong , DE // AB )
\(\Rightarrow\widehat{A_2}=\widehat{D_1}=60^0\Rightarrow\)\(\Delta ADE\)đều
\(\Rightarrow\)AD = DE
Vì DE // AB ( cách dựng )
Xét \(\Delta ABC\)theo hệ quả định lý Ta-lét ta có:\(\frac{DE}{AB}=\frac{DC}{BC}\)(2)
Thế (1) vào (2) ta được :\(\frac{DE}{AB}=\frac{2}{3}\)hay \(\frac{DE}{3}=\frac{2}{3}\)
\(\Rightarrow DE=\frac{2.3}{3}=2\left(cm\right)\)
\(\Rightarrow AD=2\left(cm\right)\)( AD=DE chứng minh trên )
bài 11 ΔABC có góc BAC = ,AB=6cm,AC=12 cm ,phân giác góc BAC cắt BC tại D.Tính AD?
bài 12 cho tam giác ABC có góc A =, AB=3cm,AC=6cm.Tính độ dài đường phân giác AD?
11:
\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60=\dfrac{2\cdot6\cdot12}{6+12}\cdot\dfrac{1}{2}=4\left(cm\right)\)
12:
\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60=\dfrac{2\cdot3\cdot6}{3+6}\cdot\dfrac{1}{2}=\dfrac{3\cdot6}{3+6}=\dfrac{18}{9}=2\left(cm\right)\)
1. cho tam giác ABC bất kì , có:AB=4cm, AC=6cm, AD là phân giác góc A
a)tính DB/DC
b)tính DC khi DC=3cm
2. cho tam giác ABC vuông tại A, có AB=3cm,AC=4cm.vẽ đường cao AH(H thuộc BC)
a) tính độ dài BC
b) chứng minh tam giác HBA~HAC
c) chứng minh HA2=HB.HC
d) kẻ đường phân giác AD(D THUỘC BC). TÍNH ĐỘ DÀI DB VÀ DC
Cho tam giác nhọn ABC kẻ AH vuông góc với BC Biết AH = 4cm BH= 3cm AC=6cm Tính độ dài AB và HC
\(\text{Xét }\Delta AHB\text{ vuông tại H có:}\)
\(AB^2=AH^2+BH^2\text{(định lí Py ta go)}\)
\(\Rightarrow AB^2=4^2+3^2=16+9=25\left(cm\right)\)
\(\Rightarrow AB=\sqrt{25\left(cm\right)}=5\left(cm\right)\)
\(\text{Xét }\Delta AHC\text{ có:}\)
\(AC^2=AH^2+HC^2\)
\(\Rightarrow HC^2=AC^2-AH^2\text{(định lí Py ta go đảo)}\)
\(\Rightarrow HC^2=6^2-4^2=36-16=20\left(cm\right)\)
\(\Rightarrow HC=\sqrt{20}\left(cm\right)\)
Cho tam giác ABC nhọn, phân giác AD, biết AB=c, AC=b. Tính độ dài AD theo b, c và góc A
Cho tam giác ABC vuông tại A, có AB=3cm, AC=5cm, đường phân giác AD. Đường vuông góc với DC cắt AC ở E.
a) CM: tam giác ABC và DEC đồng dạng
b) Tính độ dài các đoạn thẳng BC, BD
c) Tính độ dài AD
d) Tính d.tích tam giác ABC và d.tích tứ giác ABDE
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDE đồng dạng với ΔCAB
b: BC=căn 3^2+5^2=căn 34(cm)
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/5=căn 34/8
=>BD=3/8*căn34(cm)
c: \(AD=\dfrac{2\cdot5\cdot3}{5+3}\cdot cos45=\dfrac{15}{8}\cdot\sqrt{2}\left(cm\right)\)
1.Cho tam giác ABC vuông tại A , đường phân giác BE , biết EC=3cm ,BC=6cm . Tính độ dài các đoạn thẳng AB, AC .
2.Cho tam giác ABC vuông tại A , đường cao AH . Biết AB:AC=3:7 , AH=42cm.Tính độ dài BH , CH
3.Cho tam giác ABC vuông tại A , đường cao AH . Biết BH:CH=9:16 , AH-48cm.Tính độ dài các cạnh góc vuông của tam giác ABC
4.Cho tam giác ABC vuông tại A ,phân giác AD , đường cao AH. Biết AB=21cm,AC=28cm .Tính HD