Chứng minh rằng (1/5+1/13+1/25+...+1/10^2+11^2)<9/20
Chứng tỏ rằng : 1/5 + 1/13 + 1/25 + ... + 1/10 mũ 2 + 11 mũ 2 < 9/20
chứng tỏ rằng :
1/5 + 1/13 + 1/25 +...+ 1/10^2 + 11^2 < 9/20
Xét vế trái : \(T=\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{221}\)
Ta có : \(T< \frac{1}{5}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{220}\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{11}\right)< \frac{1}{5}+\frac{1}{4}\Rightarrow T< \frac{9}{20}\)
\(\dfrac{1}{5}\)+\(\dfrac{1}{13}\)+\(\dfrac{1}{25}\)+...+\(\dfrac{1}{10^2}\)+\(\dfrac{1}{11^2}\)< \(\dfrac{9}{20}\)
Chứng tỏ rằng biểu thức trên bé hơn 9/20
1) Chứng minh rằng các số sau đây là hợp số
a) 1+2^7+3^11+5^13+7^17+11^19
b) 21^123+23^124+25
c) 425^25-37^15
d) 195^354-151^25
Chứng tỏ rằng:
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+....+\frac{1}{10^2+11^2}<\frac{9}{20}\)
Chứng minh
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+....+\frac{1}{10^2+11^2}<\frac{9}{20}\)
đơn giải thôi nhưng mình ko bấn fx đc
xét vế trái : \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{221}\)
ta có : \(T< \frac{1}{5}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{220}\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{11}\right)< \frac{1}{5}+\frac{1}{4}\Rightarrow T< \frac{9}{20}\)
1.Chứng minh rằng: √2 + √6 +√12 + √20 < 12
2. Cho A=1/5+2/(5^2)+3/(5^3)+......+10/(5^10)+11/(5^11). Chứng minh rằng A < 5/16
chứng minh rằng S=1/5+1/13+1/25+....+1/19^20^2 nhỏ hơn 17/20
Câu 1: Chứng minh rằng nếu số tự nhiên n chia hết cho 11 dư 4 thì n2 chia hết cho 11 dư 5.
Câu 2: Chứng minh rằng nếu số tự nhiên n chia cho 13 dư 7 thì n2-10 chia hết cho 13.
Bg
C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))
=> n = 11k + 4 (với k \(\inℕ\))
=> n2 = (11k)2 + 88k + 42
=> n2 = (11k)2 + 88k + 16
Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5
=> n2 chia 11 dư 5
=> ĐPCM
C2: Ta có: n = 13x + 7 (với x \(\inℕ\))
=> n2 - 10 = (13x)2 + 14.13x + 72 - 10
=> n2 - 10 = (13x)2 + 14.13x + 39
Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13
=> n2 - 10 \(⋮\)13
=> ĐPCM