Chứng minh các số sau là hợp số :
a) \(1+2^7+3^{11}+5^{13}+7^{17}+11^{19}\)
b)\(21^{123}+23^{124}+25^{125}\)
Chứng minh các số sau là hợp số :
a) \(1+2^7+3^{11}+5^{13}+7^{17}+11^{19}\)
b)\(21^{123}+23^{124}+25^{125}\)
Chú ý : Không thể dùng chữ số tận cùng vì cả 2 biểu thức đều tận cùng lẻ , hoặc khác 0 ; khác 5.
cm các số sau là hợp số
1+2^7+3^11+5^13+7^17+11^19
Câu 1: Chứng minh rằng nếu số tự nhiên n chia hết cho 11 dư 4 thì n2 chia hết cho 11 dư 5.
Câu 2: Chứng minh rằng nếu số tự nhiên n chia cho 13 dư 7 thì n2-10 chia hết cho 13.
Giải phương trình:
1) (3x-1)^2-5(2x+1)^2+96x-3)(2x+1)=(x-1)^2
2) (x+2)^3-(x-2)^3=12(x-1)-8
3) x-1/4-5-2x/9=3x-2/3
4) 25x-655/95-5(x-12)/209=[89-3x-2(x-13)/5]/11
5) 29-x/21+27-x/23+25-x/25+23-x/27=-4
6) x-69/30+x-67/32=x-63/36+x-61/38
7)x+117/19+x+4/28+x+3/57=0
8) 59-x/41+57-x/43+2=x-55?45+x-53/47-2
9) Cho phương trình: mx+x-m^2=2x-2 (x là ẩn). Tìm m để phương trình:
a) Có nghiệm duy nhất
b) Vô số nghiệm
c) Vô nghiệm
Phân tích đa thức thành nhân tử
Chứng minh rằng:
1/745+744—742 chia hết cho 391
2/325+323—321 chia hết cho 89
Chứng minh rằng các số sau là số chính phương:
a)A= 11...155..56 (n số 1; n - 1 số 5)
b)B= 44...4 + 22...2 + 88...8 + 7 (2n số 4; n+1 số 2; n số 8)
Gợi ý: 99...9(n số 9) = 10n - 1
Bài 1 : chứng minh rằng các biểu thức sau đây không phụ thuộc vào x a,A=(3x+7)(2x+3)-(2x+3)-(3x-5)(2x+11) b,B=(x^2-2)(x^2+x-1)-x(x^3+x^2-3x-2) Bài 2:Tìm x biết: a,6x(5x+3)+3x(1-10x)=7 b,(3x-3)(5-21x)+(7x+4)(9x-5)=44 c,(x+1)(x+2)(x+5)-x^2(x+8)=27 d,(2x-1)(3-x)+(x-2)(x+3)=(1-x)(x+2) Bài 3 Tính a,(2x+3)^3 b,(x-3y)^3 c.(x+4)(x^2-4x+16) d,(1/3x+2y)(1/9x^2-2/3xy+4y) e,(x-3y)(x2+3xy+9y^2)
Cho dãy số: 13; 25; 43; ....; \(3\left(n^2+n\right)+7\)...... Với n nguyên dương, chứng minh rằng không có số hạng nào của dãy là lập phương của 1 số tự nhiên