Tìm giá trị lớn nhất của biểu thức sau: \(A=\frac{3n^2+25}{n^2+5}\left(n\in Z\right)\)
Bạn nào làm nhanh nhất, đầy đủ nhất mik tik cho
1/ Cho x + y = 2
Chứng minh xy nhỏ hơn hoặc bằng 1.
2/
a) Tìm giá trị lớn nhất của \(A=3-\left(\frac{4}{9}x+\frac{2}{15}\right)^6.\)
b) Tìm giá trị lớn nhất của \(B=2,25-\frac{1}{4}\left(1+2x\right)^2.\)
c) tìm giá trị lớn nhất của \(C=\frac{1}{3+\frac{1}{2}\left(2x-3\right)^4}.\)
Mik đg cần gấp ai làm nhanh và đúng nhất mik sẽ tik cho 3 cái!
1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)
Dấu "=" xảy ra khi x=y=1
Máy mình bị lỗi nên ko nhìn được các bài tiếp theo
Chúc bạn học tốt :)
Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2
Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0
Cho biểu thức:
N=\(\frac{\left(x+2\right)^2}{x}.\left(1-\frac{x^2}{x+2}\right)-\frac{x^2+6x+4}{x}\)
a) Tìm điều kiện xác định của biểu thức N. Rút gọn N
b) Tìm x để biểu thức N đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó
a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)
\(N=\frac{\left(x+2\right)^2}{x}.\left(1-\frac{x^2}{x+2}\right)-\frac{x^2+6x+4}{x}\)
\(N=\frac{\left(x+2\right)^2}{x}.\frac{x+2-x^2}{x+2}-\frac{x^2+6x+4}{x}\)
\(N=\frac{\left(x+2\right)\left(x+2-x^2\right)-x^2-6x-4}{x}\)
\(N=\frac{x^2+2x-x^3+2x+4-2x^2-x^2-6x-4}{x}\)
\(N=\frac{-x^3-2x^2-2x}{x}\)
\(N=\frac{-x\left(x^2+2x+2\right)}{x}\)
\(N=-\left(x^2+2x+2\right)\)
b) \(N=-\left(x^2+2x+2\right)\)
\(\Leftrightarrow N=-\left(x^2+2x+1+1\right)\)
\(\Leftrightarrow N=-\left(x+1\right)^2-1\le-1\)
Max N = -1 \(\Leftrightarrow x=-1\)
Vậy .......................
Cho biểu thức \(A=\frac{3\left|x\right|+2}{4\left|x\right|-5}\left(x\in Z\right)\)
Tìm giá trị lớn nhất của A?
\(A=\frac{3\left|x\right|+2}{4\left|x\right|-5}=\frac{3}{4}\cdot\frac{4\left(3\left|x\right|+2\right)}{3\left(4\left|x\right|-5\right)}=\frac{3}{4}\cdot\frac{12\left|x\right|+8}{12\left|x\right|-15}=\frac{3}{4}\left(1+\frac{23}{12\left|x\right|-15}\right)\)
A lớn nhất khi \(\frac{23}{12\left|x\right|-15}\) lớn nhất => 12|x| - 15 nhỏ nhất và 12|x| - 15 > 0 => x = 2
Vậy \(A_{Max}=\frac{3}{4}\left(1+\frac{23}{9}\right)=\frac{8}{3}\) khi x = 2
Tìm x để biểu thức sau đạt giá trị lớn nhất. Hãy tìm giá trị lớn nhất đó.
A =\(\frac{2006}{\left|x-2013\right|+7}\)
LÀM NHANH GIÚP MIK NHÉ
Để \(\frac{2006}{\left|x-2013\right|+7}\) lớn nhất thì \(\left|x-2013\right|+7\) bé nhất
Đặt \(C=\left|x-2013\right|+7\)
Ta có:\(\left|x-2013\right|\ge0\)
\(\Rightarrow\left|x-2013\right|+7\ge7\)
\(\Rightarrow MinC=7\) khi x=2013
1. Tìm tất cả các số tự nhiên \(n\) để phân thức sau tối giản: \(A=\dfrac{2n^2+3n+1}{3n+1}\)
2. Cho các số thực dương x, y, z thỏa mãn \(xy^2z^2+x^2z+y=3z^2\) .Tìm giá trị lớn nhất của biểu thức: \(M=\dfrac{z^4}{1+z^4\left(x^4+y^4\right)}\)
1.
Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)
\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)
\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)
\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)
\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)
\(\Rightarrow n\) lẻ thì A không tối giản
\(\Rightarrow n\) chẵn thì A tối giản
2.
Giả thiết tương đương:
\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)
Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)
Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)
\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)
\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)
\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)
Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau:
\(A=\frac{1}{2\left(x-1\right)^2+3}\)
\(B=\frac{13}{17-x}\left(x\in Z\right)\)
Giúp mk nha các bạn! Mk sắp thi rùi! Tks trc!
để A có GTLN thì 2(x-1)2 + 3 phải bé nhất
mà 2(x-1)2 luôn > hoặc = 0
=> A có GTLN thì 2(x-1)2 + 3 = 3
=> x=1
GTLN of A là 1/3 khi và chỉ khi x = 1
để B có GTLN thì 17-x > 0 và bé nhất
=> 17-x = 1
=> x = 16
GTLN của B = 1 khi và chỉ khi x=16
Bài 1: Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất:
\(P=2010-\left(x+1\right)^{2008}\)
Bài 2: Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất:
\(C=\frac{5}{\left|x\right|-2}\)
Làm giúp mik nhé! Thanks
Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)
\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)
Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)
Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất
Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
\(P=2010-\left(x+1\right)^{2008}\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)
\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)
Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)
\(\Rightarrow P=2010-0=2010\)
(Dấu"=" xảy ra <=> \(x=-1\)
Bài 2:
Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)
\(\Rightarrow C=-5\)
Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể
cho M = \(\frac{3n-5}{n+4}\) tìm số nguyên n để A có giá trị nguyên
bạn nào làm nhanh nhất mik sẽ tick cho, mik đang cần gấp ạ
ta có :
\(M=\frac{3\times\left(n+4\right)-17}{n+4}=3-\frac{17}{n+4}\) nguyên khi n+4 là ước của 17 hay
\(n+4\in\left\{\pm1;\pm17\right\}\Leftrightarrow n\in\left\{-21;-5;-3;13\right\}\)
A=\(\frac{39,48\cdot17+83\cdot39,48}{1990-72:\left(a-6\right)}:\)
a) Tính giá trị biểu thức A khi a = 51
b) Tìm giá trị số tự nhiên của a để A có giá trị lớn nhất ?
c) Tính giá trị lớn nhất
( . là dấu x )
Nhớ giải cả cách làm nhé
Ai làm đúng và đầy đủ nhất mk tk cho 5 cái
hứa luôn