Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tsukino Usagi
Xem chi tiết
Nguyễn Gia Triệu
18 tháng 9 2018 lúc 19:37

1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)

Dấu "=" xảy ra khi x=y=1

Máy mình bị lỗi nên ko nhìn được các bài tiếp theo

Chúc bạn học tốt :)

Phùng Thị Hồng Vân
18 tháng 9 2018 lúc 19:39

Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2    

Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0

Trần Minh Ánh
Xem chi tiết
Nguyễn Việt Hoàng
18 tháng 8 2020 lúc 15:41

a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)

\(N=\frac{\left(x+2\right)^2}{x}.\left(1-\frac{x^2}{x+2}\right)-\frac{x^2+6x+4}{x}\)

\(N=\frac{\left(x+2\right)^2}{x}.\frac{x+2-x^2}{x+2}-\frac{x^2+6x+4}{x}\)

\(N=\frac{\left(x+2\right)\left(x+2-x^2\right)-x^2-6x-4}{x}\)

\(N=\frac{x^2+2x-x^3+2x+4-2x^2-x^2-6x-4}{x}\)

\(N=\frac{-x^3-2x^2-2x}{x}\)

\(N=\frac{-x\left(x^2+2x+2\right)}{x}\)

\(N=-\left(x^2+2x+2\right)\)

b) \(N=-\left(x^2+2x+2\right)\)

\(\Leftrightarrow N=-\left(x^2+2x+1+1\right)\)

\(\Leftrightarrow N=-\left(x+1\right)^2-1\le-1\)

Max N = -1 \(\Leftrightarrow x=-1\)

Vậy .......................

Khách vãng lai đã xóa
Xem chi tiết
ST
7 tháng 2 2018 lúc 21:08

\(A=\frac{3\left|x\right|+2}{4\left|x\right|-5}=\frac{3}{4}\cdot\frac{4\left(3\left|x\right|+2\right)}{3\left(4\left|x\right|-5\right)}=\frac{3}{4}\cdot\frac{12\left|x\right|+8}{12\left|x\right|-15}=\frac{3}{4}\left(1+\frac{23}{12\left|x\right|-15}\right)\)

A lớn nhất khi \(\frac{23}{12\left|x\right|-15}\) lớn nhất => 12|x| - 15 nhỏ nhất và 12|x| - 15 > 0 => x = 2

Vậy \(A_{Max}=\frac{3}{4}\left(1+\frac{23}{9}\right)=\frac{8}{3}\) khi x = 2

Ngô Xuân Bảo
Xem chi tiết
Nguyễn Hưng Phát
11 tháng 7 2016 lúc 20:33

Để \(\frac{2006}{\left|x-2013\right|+7}\) lớn nhất thì \(\left|x-2013\right|+7\) bé nhất

Đặt \(C=\left|x-2013\right|+7\)

Ta có:\(\left|x-2013\right|\ge0\)

\(\Rightarrow\left|x-2013\right|+7\ge7\)

\(\Rightarrow MinC=7\)  khi x=2013

loancute
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 2021 lúc 18:46

1.

Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)

\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)

\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)

\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)

\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)

\(\Rightarrow n\) lẻ thì A không tối giản

\(\Rightarrow n\) chẵn thì A tối giản

Nguyễn Việt Lâm
21 tháng 1 2021 lúc 18:55

2.

Giả thiết tương đương:

\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)

Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)

Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)

\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)

\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)

\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)

Ngô Hà Phương
Xem chi tiết
Nguyễn Duy Đạt
15 tháng 12 2016 lúc 22:07

để A có GTLN thì 2(x-1)2 + 3 phải bé nhất

mà 2(x-1)2 luôn > hoặc = 0 

=> A có GTLN thì 2(x-1)2 + 3 = 3 

=> x=1

GTLN of A là 1/3 khi và chỉ khi x = 1

để B có GTLN thì 17-x > 0 và bé nhất

=> 17-x = 1

=> x = 16

GTLN của B = 1 khi và chỉ khi x=16

Trần Văn Thành
Xem chi tiết
Nguyễn Hưng Phát
11 tháng 7 2018 lúc 21:40

Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)

\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)

Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)

Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất

Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

Kiên-Messi-8A-Boy2k6
11 tháng 7 2018 lúc 21:38

\(P=2010-\left(x+1\right)^{2008}\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)

\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)

Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)

\(\Rightarrow P=2010-0=2010\)

(Dấu"=" xảy ra <=> \(x=-1\)

Bài 2:

Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)

\(\Rightarrow C=-5\)

Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể

Gíap Phương Hiền
Xem chi tiết
Nguyễn Minh Quang
17 tháng 1 2022 lúc 15:35

ta có : 

\(M=\frac{3\times\left(n+4\right)-17}{n+4}=3-\frac{17}{n+4}\) nguyên khi n+4 là ước của 17 hay

\(n+4\in\left\{\pm1;\pm17\right\}\Leftrightarrow n\in\left\{-21;-5;-3;13\right\}\)

Khách vãng lai đã xóa
Công chúa Ánh Sáng
Xem chi tiết