A = 1/1.2 +1/3.4+ ...1/999.1000
B=1/501.1000 + 1/502.999+... + 1/999.502 + 1/1000.501
tính A/B
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{999.1000}\)
\(B=\frac{1}{501.1000}+\frac{1}{502.999}+...+\frac{1}{999.502}+\frac{1}{1000.501}\)
Tính\(\frac{A}{B}\)?
Mk cần gấp nhanh lên nhé!
Mình ko chép đề nx nha
A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{999}-\frac{1}{1000}\)
A = \(\frac{1}{1}-\frac{1}{1000}\)
A = \(\frac{1000}{1000}-\frac{1}{1000}=\frac{999}{1000}\)
B = \(\frac{1}{501}-\frac{1}{1000}+\frac{1}{502}-\frac{1}{999}+...\frac{1}{1}+...+\frac{1}{999}-\frac{1}{502}+\frac{1}{1000}+\frac{1}{501}\)
B = \(\frac{1}{501}-\frac{1}{501}+\frac{1}{1000}-\frac{1}{1000}+\frac{1}{502}-\frac{1}{502}+\frac{1}{999}-\frac{1}{999}+...+\frac{1}{1}\)
B = \(\frac{1}{1}=1\)
Vậy \(\frac{A}{B}=\frac{\frac{999}{1000}}{1}=\frac{999}{1000}\)
Cho mk hỏi cái \(\frac{1}{2}-\frac{1}{3}\)ở dâu thế bn?
Bài 1 :
Cho :
A = \(\frac{1}{51}\)+ \(\frac{1}{52}\)+ . . . + \(\frac{1}{100}\)
B = 1 - \(\frac{1}{2}\)+ \(\frac{1}{3}\)- \(\frac{1}{4}\)+ ... + \(\frac{1}{99}\)- \(\frac{1}{100}\)
C = \(\frac{1}{1.2}\)+ \(\frac{1}{3.4}\)+ \(\frac{1}{5.6}\)+ . . . + \(\frac{1}{99.100}\)
So sánh A với B với C
Bài 2 :
Cho :
A = \(\frac{1}{1.2}\)+\(\frac{1}{3.4}\)+ . . . + \(\frac{1}{999.1000}\)
B = \(\frac{1}{501.1000}\)+ \(\frac{1}{502.999}\)+ . . . +\(\frac{1}{999.502}\)+ \(\frac{1}{1000.501}\)
Tính \(\frac{A}{B}\)= ?
Bài 3 : Tính
a) A = \(\frac{3}{4}\).\(\frac{8}{9}\). \(\frac{15}{16}\). ... . \(\frac{9999}{10000}\)
b) B = \(\frac{8}{9}\). \(\frac{15}{16}\). \(\frac{24}{25}\). ... . \(\frac{3599}{3600}\)
Bài 4 :
Cho : A =\(\frac{1}{2}\).\(\frac{3}{4}\). \(\frac{5}{6}\). ... . \(\frac{9999}{10000}\)
B = \(\frac{1}{100}\)
So sánh A và B
Tính:
a) A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) +...+ \(\dfrac{1}{998.999}\) + \(\dfrac{1}{999.1000}\)
b) B = \(\dfrac{1}{1.6}\) + \(\dfrac{1}{6.11}\) + \(\dfrac{1}{11.16}\) +...+ \(\dfrac{1}{495.500}\)
c) C = \(\dfrac{1}{1.2.3}\) + \(\dfrac{1}{2.3.4}\) + \(\dfrac{1}{3.4.5}\) +...+ \(\dfrac{1}{998.999.1000}\)
(Mong mn giúp ạ)
a.
$A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{1000-999}{999.1000}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}$
$=1-\frac{1}{1000}=\frac{999}{1000}$
b.
$5B=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+....+\frac{5}{495.500}$
$=\frac{6-1}{1.6}+\frac{11-6}{6.11}+\frac{16-11}{11.16}+....+\frac{500-495}{495.500}$
$=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{495}-\frac{1}{500}$
$=1-\frac{1}{500}=\frac{499}{500}$
$\Rightarrow B=\frac{499}{500}: 5= \frac{499}{2500}$
c.
$2C=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{998.999.100}$
$=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{1000-998}{998.999.1000}$
$=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{998.999}-\frac{1}{999.1000}$
$=\frac{1}{1.2}-\frac{1}{999.1000}=\frac{499499}{999000}$
$\Rightarrow C=\frac{499499}{999000}:2=\frac{499499}{1998000}$
Tính tổng sau: \(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{999.1000}\)
Áp dụng công thức \(\dfrac{1}{k\left(k+1\right)}=\dfrac{1}{k}-\dfrac{1}{k+1}\), ta có:
\(A=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{999}-\dfrac{1}{1000}\right)=1-\dfrac{1}{1000}=\dfrac{999}{1000}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{999}-\dfrac{1}{1000}\)
\(A=1-\dfrac{1}{1000}\)
\(A=\dfrac{999}{1000}\)
tính
a, 1/1.2+1/2.3+1/3.4+....+1/999.1000
b, B= 1/2.4+1/4.6+1/6.8+1/8.10
a, 1/1.2+1/2.3+1/3.4+...+1/999.1000
= 1/1-1/2+1/2-1/3+1/3-1/4+....+1/999-1/1000
= 1/1-1/1000
= 999/1000
b, 1/2.4+1/4.6+1/6.8+1/8.10
= 1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10
= 1/2-1/10
= 4/10 =2/5
tính B =(2016/1000+2016/999+...+2016/501)/(-1/1.2+-1/3.4+-1/5.6+....+-1/999.1000)
Bài 1 :
Cho :
A = \(\frac{1}{51}\) + \(\frac{1}{52}\) + . . . + \(\frac{1}{100}\)
B = 1 - \(\frac{1}{2}\) + \(\frac{1}{3}\)- \(\frac{1}{4}\) + ... + \(\frac{1}{99}\)- \(\frac{1}{100}\)
C = \(\frac{1}{1.2}\) + \(\frac{1}{3.4}\) + \(\frac{1}{5.6}\)+ . . . + \(\frac{1}{99.100}\)
So sánh A với B với C
Bài 2 :
Cho :
A = \(\frac{1}{1.2}\) +\(\frac{1}{3.4}\) + . . . + \(\frac{1}{999.10000}\)
B = \(\frac{1}{501.1000}\) + \(\frac{1}{502.999}\) + . . . +\(\frac{1}{999.502}\) + \(\frac{1}{1000.501}\)
Tính \(\frac{A}{B}\) = ?
bài 2:
a)\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}\)
\(=1-\frac{1}{1000}\)
\(=\frac{999}{1000}\)
mk ko biết bn có sai đề ko nhưng mk chỉ lm theo ý mk hiểu thôi! sai thì thôi nha!
Bài 1 :
Cho :
A = \(\frac{1}{51}\) + \(\frac{1}{52}\) + . . . + \(\frac{1}{100}\)
B = 1 - \(\frac{1}{2}\) + \(\frac{1}{3}\)- \(\frac{1}{4}\) + ... + \(\frac{1}{99}\)- \(\frac{1}{100}\)
C = \(\frac{1}{1.2}\) + \(\frac{1}{3.4}\) + \(\frac{1}{5.6}\)+ . . . + \(\frac{1}{99.100}\)
So sánh A với B với C
Bài 2 :
Cho :
A = \(\frac{1}{1.2}\) +\(\frac{1}{3.4}\) + . . . + \(\frac{1}{999.10000}\)
B = \(\frac{1}{501.1000}\) + \(\frac{1}{502.999}\) + . . . +\(\frac{1}{999.502}\) + \(\frac{1}{1000.501}\)
Tính \(\frac{A}{B}\) = ?
bn làm như vầy nè
a=1/51+1/52+...+1/100
A=1/3.1/7 + 1/2.1/26+....1/2.1/50
A=1/3-1/7+1/2-1/26+...1/2-1/50
A=1/3-1/50
A=47/50
như vầy đó bn tin mik đi
tinh B=(2016/1000+2016/999+2016/998+...+2016/501)/(-1/1.2+-1/3.4+-1/5.6+...+-1/999.1000)