Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tường Nguyễn Thế
Xem chi tiết
nguyễn huy
Xem chi tiết
GPSgaming
Xem chi tiết
Kaori Miyazono
7 tháng 5 2017 lúc 9:34

\(S=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2017}\)

\(S=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{2035153}\)

\(S=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{4070306}\)

\(S=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{2017.2018}\)

\(S=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2017.2018}\right)\)

\(S=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2017}-\frac{1}{2018}\right)\)

\(S=2.\left(\frac{1}{2}-\frac{1}{2018}\right)=2.\frac{504}{1009}=\frac{1008}{1009}\)

Vậy \(S=\frac{1008}{1009}\)

Nguyễn Thị Ngọc Mai
7 tháng 5 2017 lúc 9:44

\(S=\frac{1008}{1009}\)

ST
7 tháng 5 2017 lúc 9:46

\(S=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2016+2017}\)

\(=\frac{1}{2\left(2+1\right):2}+\frac{1}{3\left(3+1\right):2}+\frac{1}{4\left(4+1\right):2}+....+\frac{1}{2017\left(2017+1\right):2}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2017.2018}\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2017.2018}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2017}-\frac{1}{2018}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{2018}\right)=2\cdot\frac{504}{1009}=\frac{1008}{1009}\)

Hoàng Đỗ Việt
Xem chi tiết
 
4 tháng 5 2017 lúc 19:29

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\)

Ta có : \(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\right)\)

          \(2A=2+\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^{2017}}\)

          \(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)

    \(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\right)\)

          \(A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}-1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{2016}}-\frac{1}{2^{2017}}\)

         \(A=2-\frac{1}{2^{2017}}=\frac{2^{2018}-1}{2^{2017}}\)

Vậy   \(A=\frac{2^{2018}-1}{2^{2017}}\)

Zlatan Ibrahimovic
4 tháng 5 2017 lúc 19:11

A=đã cho.

2A=1+1/2+1/2^2+1/2^3+...+1/2^2016.

2A-A=1-1/2^2017(khử).

A=1-1/2^2017.

Thanh Tùng DZ
4 tháng 5 2017 lúc 19:13

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}+\frac{1}{2^{2017}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}+\frac{1}{2^{2017}}\right)\)

\(A=1-\frac{1}{2^{2017}}\)

Phương Anh
Xem chi tiết
Phương Anh
7 tháng 2 2019 lúc 21:02

Nhanh k cho nè

zZz Cool Kid_new zZz
7 tháng 2 2019 lúc 21:06

làm lần lượt nhá,dài dòng quá khó coi.ahihihi!

\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)

\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)

zZz Cool Kid_new zZz
7 tháng 2 2019 lúc 21:14

b

Tổng quát:\(1-\frac{1}{1+2+3+....+n}=1-\frac{1}{\frac{n\left(n+1\right)}{2}}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n^2+2n\right)-\left(n+2\right)}{n\left(n+1\right)}\)

\(=\frac{n\left(n+2\right)-\left(n+2\right)}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

Thay số vào,ta được:

\(\frac{\left(2-1\right)\left(2+2\right)}{2\left(2+1\right)}\cdot\frac{\left(3-1\right)\left(3+2\right)}{3\left(3+1\right)}\cdot.....\cdot\frac{\left(2017-1\right)\left(2017+2\right)}{2017\left(2017+1\right)}\)

\(=\frac{1\cdot4}{2\cdot3}\cdot\frac{2\cdot5}{3\cdot4}\cdot...\cdot\frac{2016\cdot2019}{2017\cdot2018}\)

\(=\frac{1\cdot2\cdot3\cdot...\cdot2016}{2\cdot3\cdot4\cdot...\cdot2017}\cdot\frac{4\cdot5\cdot6\cdot...\cdot2019}{3\cdot4\cdot5\cdot...\cdot2018}\)

\(=\frac{1}{2017}\cdot\frac{2019}{3}=\frac{2019}{6051}\)

Công chúa âm nhạc
Xem chi tiết
Trần Minh Hoàng
Xem chi tiết
Nguyễn Tất Đạt
23 tháng 6 2017 lúc 17:38

1. Bài giải:

Đặt \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1002}\)

\(\Rightarrow\frac{1}{2}A=A-\frac{1}{2}A=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1000}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1002}\right)\)

\(\Rightarrow\frac{1}{2}A=1-\frac{1}{1002}=\frac{1001}{1002}\Rightarrow A=\frac{2002}{1002}=\frac{1001}{501}\)

Vậy \(A=\frac{1001}{501}\)

chi le
Xem chi tiết
Thanh Tùng DZ
21 tháng 5 2017 lúc 18:39

B = \(\frac{3^2}{2.4}+\frac{3^2}{4.6}+\frac{3^2}{6.8}+...+\frac{3^2}{198.200}\)

B = \(\frac{3^2}{2}.\left(\frac{1}{2}-\frac{1}{4}\right)+\frac{3^2}{2}.\left(\frac{1}{4}-\frac{1}{6}\right)+\frac{3^2}{2}.\left(\frac{1}{6}-\frac{1}{8}\right)+...+\frac{3^2}{2}.\left(\frac{1}{198}-\frac{1}{200}\right)\)

B = \(\frac{3^2}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{198}-\frac{1}{200}\right)\)

B = \(\frac{9}{2}.\left(\frac{1}{2}-\frac{1}{200}\right)\)

B = \(\frac{9}{2}.\frac{99}{200}\)

B = \(\frac{891}{400}\)

D = 1 x 2 + 2 x 3 + 3 x 4 + 4 x 5 + ... + 48 x 49

3D = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + 4 x 5 x 3 + ... + 48 x 49 x 3

3D = 1 x 2 x 3 + 2 x 3 x ( 4 - 1 ) + 3 x 4 x ( 5 - 2 ) + 4 x 5 x ( 6 - 3 ) + ... + 48 x 49 x ( 50 - 47 )

3D = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + 4 x 5 x 6 - 3 x 4 x 5 + ... + 48 x 49 x 50 - 47 x 48 x 49

3D = 48 x 49 x 50

D = ( 48 x 49 x 50 ) : 3

D = 39200

E = 12 + 22 + 32 + ... + 482

E = 1 x 1 + 2 x 2 + 3 x 3 + ... + 48 x 48

E = 1 x ( 2 - 1 ) + 2 x ( 3 - 1 ) + 3 x ( 4 - 1 ) + ... + 48 x ( 49 - 1 )

E = 1 x 2 - 1 + 2 x 3 - 2 + 3 x 4 - 3 + ... + 48 x 49 - 49

E = ( 1 x 2 + 2 x 3 + 3 x 4 + ... + 48 x 49 ) - ( 1 + 2 + 3 + ... + 49 )

Ta tính được vế trong ngoặc thứ nhất là 39200 , còn vế trong ngoặc thứ hai là 1225

thay vào ta được :

E = 39200 - 1225

E = 37975 

Tuấn Anh Phan Nguyễn
21 tháng 5 2017 lúc 15:57

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Rightarrow A=1-\frac{1}{2^{100}}\)

titanic
Xem chi tiết
Đinh Đức Hùng
12 tháng 8 2017 lúc 14:42

\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{2017}\left(1+2+...+2017\right)\)

\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3\left(3+1\right)}{2}+....+\frac{1}{2017}.\frac{2017\left(2017+1\right)}{2}\)

\(=1+\frac{2.3}{2.2}+\frac{3.4}{3.2}+....+\frac{2017.2018}{2017.2}\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{2018}{2}\)

\(=\frac{2+3+4+...+2018}{2}\)

\(=\frac{\frac{2018\left(2018+1\right)}{2}-1}{2}\)

\(=1018585\)

Nguyễn Hải Đăng
12 tháng 8 2017 lúc 14:59

Suy ra A=1+1.5+2+....+1009=1 013 532.5