cho tam giác abc vuông tại a. Tia phân giác của góc abc cắt actaij d. Kẻ de vuông góc bc. Qua b vẽ đường thẳng song song với ac cắt đườngt hẳng de tại h. C/m tam giác dbh là tam giác cân
Cho tam giác ABC cân A . Kẻ phân giác CD (D∈ AB ) . Qua D vẽ đường thẳng vuông góc với CD , cắt BC tại F và CA tại K . Đường thẳng kẻ qua D và song song với BC cắt AC tại E . Phân giác của góc BAC cắt DE tại M . chứng minh rằng: a) Hai tam giác CDF và CDK bằng nhau. b) Các tam giác DEC và DEK là các tam giác cân. c) CF BD = 2 . d) MD=1/4 CF .
Cho tam giác ABC cân tại A, các đường thẳng qua B vuông góc với AB và qua C vuông góc với AC cắt nhau tại S
a) Chứng minh tam giác SBC cân
b) Trên tia đối của tia BS lấy điểm D, trên tia đối của tia CS lấy điểm E sao cho CE=BD. Chứng minh rằng DE song song BC
Bài 3: Cho tam giác ABC. Vẽ ra phía ngoài tam giác ABC các tam giác vuông cân ở A là ABD và ACE. Dựng AH vuông góc với BC, đường thẳng HA cắt DE ở K. Dựng AI vuông góc với DE, đường thẳng IA cắt BC tại M. Chứng minh rằng:
a) Tam giác AEK = Tam giác CAM
b) KD = KE
Cho tam giác ABC vuông tại A. Đường phân giác của góc ABC cắt cạnh AC tại D. Vẽ DE vuông góc BC tại E.
a) Chứng minh: tam giác ABD = tam giác EBD
b) Đường thẳng DE cắt đường thẳng BA tại K. Chứng minh: BK = BC
c) Qua C kẻ đường thẳng song song DE cắt đường thẳng BA tại I. Chứng minh: góc CIK = 90 độ - góc ABC
cho tam giác ABC vuông tại A, vẽ tia phân giác góc B cắt AC tại D, qua A vẽ đường thẳng vuông góc với BD cắt BD tại H và cắt BC tại E.
a-C/m tam giác ABE cân tại B
b-C/m DE Vuông góc với BC
c-C/m góc ABE bằng góc EDC
d-So sánh AD và DC
e-Qua A vẽ đường thẳng song song với BD cắ BC tại F. C/m tam giác ABF là tam giác cân =>B là trung điểm EF
*CẦN GẤP_K CẦN VẼ HÌNH
Cho tam giác ABC vuông tại A( AB<AC ). Về phía ngoài tam giác ABC vẽ hai tam giác ABD và tam giác ACE vuông cân ở A
a) CMR: BC = DE
b) BD song song CE
c) kẻ đường cao AH của tam giác ABC cắt DE tại M. Vẽ đường thẳng qua và vuông góc MC cắt BC tại N. CMR CA vuông góc NM
d) CMR: AM=DE/2
cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D, vẽ DE vuông góc vs BC tại E, đường thẳng DE cắt đường thẳng AB tại f a)c/m tam giác ABD=tam giác EBD và AEB cân b)c/m AE//FC c)đường thẳng qua C và song song vs È cắt BD tại M. c/m trọng tâm của 2 tam giác DEM và EFC trùng nhau
Cho tam giác ABC cân tại A. Kẻ phân giác CD ( D không thuộc AB). Qua D vẽ đường thẳng vuông góc với CD, cắt BC tại F và cắt CA tại K. Đường thẳng kẻ qua D và song song với BC cắt AC tại E. Phân giác của góc BAC cắt DE tại M. Chứng minh rằng: a) Hai tam giác CDF và CDK bằng nhau
GIÚP MIK ĐI GẤP QUÁ
Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E a) Chứng minh tam giác ADE cân b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh BD = BF. c) Chứng minh BD = CE
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E.
a) Chứng minh tam giác ADE cân.
b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh BD = BF.
c) Chứng minh BD = CE.
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD