Cho tam giác ABC nội tiếp đường tròn ( O ; R ) , các tiếp tuyến tại B và C với đường tròn ( O ; R ) cắt nhau tại E, AE cắt ( O ; R ) tại D ( khác điểm A )
1. Chứng minh : tứ giác OBEC nội tiếp đương tròn
2. Từ E kẻ đường thẳng d song song với tiếp tuyến tại A của ( O ; R ) , d cắt các đường thẳng AB , AC lần lượt tại P , Q. Chứng minh :
AB . AC = AD . AE
3. Gọi M là trung điểm đoạn thẳng BC. Chứng minh : EP = EQ và \(\widehat{PAE}=\widehat{MAC}\)
4. CHứng minh : \(AM.MD=\frac{BC^2}{4}\)