Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
sinichi kudo
Xem chi tiết
hoàng thị hoa
Xem chi tiết
Lê Hoàng Tiến Đạt
Xem chi tiết
Inequalities
12 tháng 2 2020 lúc 14:11

a) \(\frac{2a^2-3a-2}{a^2-4}=2\)

\(\Rightarrow2a^2-3a-2=2\left(a^2-4\right)\)

\(\Rightarrow2a^2-3a-2=2a^2-4\)

\(\Rightarrow-3a-2=-4\)

\(\Rightarrow-3a=-2\Rightarrow a=\frac{2}{3}\)

Khách vãng lai đã xóa
Inequalities
12 tháng 2 2020 lúc 14:14

b) \(\frac{3a-1}{3a+1}+\frac{a-3}{a+3}=2\)

\(\Rightarrow\frac{\left(3a-1\right)\left(a+3\right)+\left(3a+1\right)\left(a-3\right)}{\left(3a+1\right)\left(a+3\right)}=2\)

\(\Rightarrow\frac{6a^2-6}{3a^2+10a+3}=2\)

\(\Rightarrow6a^2-6=2\left(3a^2+10a+3\right)\)

\(\Rightarrow6a^2-6=6a^2+20a+6\)

\(\Rightarrow-6=20a+6\Rightarrow20a=-12\)

\(\Rightarrow a=\frac{-3}{5}\)

Khách vãng lai đã xóa
๖²⁴ʱ๖ۣۜTɦủү❄吻༉
21 tháng 4 2020 lúc 10:41

a, \(\frac{2a^2-3a-2}{a^2-4}=2\)

\(\Leftrightarrow\frac{a\left(2a+1\right)-2\left(2a+1\right)}{a^2-4}=2\)

\(\Leftrightarrow\frac{\left(a-2\right)\left(2a+1\right)}{a^2-2^2}=2\)

\(\Leftrightarrow\frac{\left(a-2\right)\left(2a+1\right)}{\left(a-2\right)\left(a+2\right)}=2\)

\(\Leftrightarrow\frac{2a+1}{a+2}=2\)

\(\Leftrightarrow2a+1=2\left(a+2\right)\Leftrightarrow2a+1=2a+4\Leftrightarrow2a+1-2a-4=0\)

\(\Leftrightarrow-3\ne0\)(voli)

b, \(\frac{3a-1}{3a+1}+\frac{a-3}{a+3}=2\)

\(\Leftrightarrow\frac{\left(3a-1\right)\left(a+3\right)}{\left(3a+1\right)\left(a+3\right)}+\frac{\left(a-3\right)\left(3a+1\right)}{\left(a+3\right)\left(3a+1\right)}=\frac{2\left(3a+1\right)\left(a+3\right)}{\left(3a+1\right)\left(a+3\right)}\)

\(\Leftrightarrow\left(3a-1\right)\left(a+3\right)+\left(a-3\right)\left(3a+1\right)=2\left(3a+1\right)\left(a+3\right)\)

\(\Leftrightarrow6a^2-6=6a^2+20a+6\)

\(\Leftrightarrow6a^2-6-6a^2-20a-6=0\)

\(\Leftrightarrow-12-20a=0\)

\(\Leftrightarrow20a=-12\)

\(\Leftrightarrow a=-\frac{3}{5}\)

Khách vãng lai đã xóa
Vy vy vy
Xem chi tiết
JiYoonMin
7 tháng 7 2018 lúc 19:02

\(ĐKXĐ:\)\(a\ne-3\)\(;a\ne\frac{-1}{3}\)

\(\frac{3a-1}{3a+1}+\frac{a-3}{a+3}=\)\(2\)

\(\Leftrightarrow\frac{\left(3a-1\right)\left(a+3\right)}{\left(3a+1\right)\left(a+3\right)}+\frac{\left(3a+1\right)\left(a-3\right)}{\left(3a+1\right)\left(a+3\right)}\)\(=\frac{2\left(3a+1\right)\left(a+3\right)}{\left(3a+1\right)\left(a+3\right)}\)

\(\Leftrightarrow\left(3a-1\right)\left(a+3\right)+\left(3a+1\right)\left(a-3\right)-2\left(3a+1\right)\left(a+3\right)\)\(=0\)

\(\Leftrightarrow3a^2+9a-a-3+3a^2-9a+a-3-6a^2-18a-2a-6\)\(=0\)

\(\Leftrightarrow\left(3a^2+3a^2-6a^2\right)+(9a-a-9a+a-18a-2a)-\left(3+3+6\right)\)\(=0\)

\(\Leftrightarrow-20a-12=0\)

\(\Leftrightarrow-20a=12\)

\(\Leftrightarrow a=\frac{-12}{20}=\frac{-3}{5}\)( thỏa mãn )

\(Vậy\) \(a=\frac{-3}{5}\)khi biểu thức có giá trị là 2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 6 2019 lúc 6:16

Giải bài 33 trang 23 SGK Toán 8 Tập 2 | Giải toán lớp 8

nguyễn phương hà
Xem chi tiết
Akai Haruma
22 tháng 9 lúc 15:32

Lời giải:
ĐKXĐ: $a\neq \frac{-1}{3}; a\neq -3$

Ta có:

$\frac{3a-1}{3a+1}+\frac{3-a}{3+a}=2$

$\Leftrightarrow \frac{3a-1}{3a+1}-1=1-\frac{3-a}{3+a}$

$\Leftrightarrow \frac{-2}{3a+1}=\frac{2a}{a+3}$

$\Rightarrow -2(a+3)=2a(3a+1)$

$\Leftrightarrow 6a^2+2a+2a+6=0$
$\Leftrightarrow 6a^2+4a+6=0$

$\Leftrightarrow 3a^2+2a+3=0$

$\Leftrightarrow (a^2+2a+1)+2a^2+2=0$

$\Leftrightarrow (a+1)^2+2a^2=-2<0$ (vô lý - loại)

Vậy PT vô nghiệm.

Dâu tâyy
Xem chi tiết
Mờ Lem
Xem chi tiết
Kiệt Nguyễn
27 tháng 9 2020 lúc 15:43

a) \(ĐK:a\ne1;a\ne0\)

\(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}=\left[\frac{a^2-2a+1}{a^2+a+1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}\)\(=\left[\frac{a^3-3a^2+3a-1}{a^3-1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}=\frac{a^3-1}{a^3-1}.\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)

b) Ta có: \(a^2+4\ge4a\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(a-2\right)^2\ge0\)

Khi đó \(\frac{4a}{a^2+4}\le1\)

Vậy MaxA = 1 khi x = 2

Khách vãng lai đã xóa
Mờ Lem
27 tháng 9 2020 lúc 16:05

•๖ۣۜIηεqυαℓĭтĭεʂ•ッᶦᵈᵒᶫ★T&T★ Idol cho em hỏi là, cái chỗ \(\left(a-2\right)^2\ge0\) thì tại sao Khi đó: \(\frac{4a}{a^2+4}\le1\)

Mong Idol pro giải thích hộ em chỗ này :((

Khách vãng lai đã xóa
Mờ Lem
27 tháng 9 2020 lúc 16:13

À dạ thôi oke, em hiểu rồi((: 

Khách vãng lai đã xóa
Sách Giáo Khoa
Xem chi tiết
Lưu Hạ Vy
22 tháng 4 2017 lúc 11:57

Biểu thức có giá trị bằng 2 thì:

Giải bài 33 trang 23 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 33 trang 23 SGK Toán 8 Tập 2 | Giải toán lớp 8