Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Daily Yub
Xem chi tiết

\(A=\left(1-\frac{1}{2010}\right)\left(1-\frac{2}{2010}\right)...\left(1-\frac{2010}{2010}\right)\left(1-\frac{2011}{2010}\right)\)

\(=\left(1-\frac{1}{2010}\right)\left(1-\frac{2}{2010}\right)...0\left(1-\frac{2011}{2010}\right)\)

\(=0\)

Ankane Yuki
Xem chi tiết
Dũng Lê Trí
8 tháng 7 2018 lúc 10:51

1) \(P=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{11}{5^{12}}\)

\(5P=\frac{1}{5^1}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{11}{5^{11}}\)

\(5P-P=\frac{1}{5^1}+\left(\frac{2}{5^2}-\frac{1}{5^2}\right)+\left(\frac{3}{5^3}-\frac{2}{5^3}\right)+...+\left(\frac{11}{5^{11}}-\frac{10}{5^{11}}\right)-\frac{11}{5^{12}}\)

\(4P=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)

Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{11}}\)

\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\)

\(5A-A=1+\frac{1}{5}-\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^2}+...+\frac{1}{5^{10}}-\frac{1}{5^{11}}\)

\(4A=1-\frac{1}{5^{11}}\Rightarrow A=\frac{1-\frac{1}{5^{11}}}{4}\)

\(4P=\frac{1-\frac{1}{5^{11}}}{4}-\frac{11}{5^{12}}=\frac{1-\frac{1}{5^{11}}}{16}-\frac{11}{5^{12}\cdot4}< \frac{1}{16}\)

My best friend
Xem chi tiết
Royan
7 tháng 5 2018 lúc 10:36

Bn tham khảo bài Lee Vincent nha!

nguyễn bá lương
16 tháng 8 2018 lúc 19:52

ta có \(\left(1-\frac{1}{2010}.\right).\left(1-\frac{2}{2010}\right)....\left(1-\frac{2010}{2010}\right).\left(1-\frac{2011}{2010}\right)\)\(\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).......0.\left(1-\frac{2011}{2010}\right)=0\)

Lee Vincent
Xem chi tiết
Nguyễn Hoàng Phúc
7 tháng 5 2017 lúc 10:19

\(B=\left(1-\frac{1}{2010}\right)x\left(1-\frac{2}{2010}\right)x\left(1-\frac{3}{2010}\right)x...x\left(1-\frac{2011}{2010}\right)\)

\(B=\left(1-\frac{1}{2010}\right)x\left(1-\frac{2}{2010}\right)x\left(1-\frac{3}{2010}\right)x....x\left(1-\frac{2010}{2010}\right)x\left(1-\frac{2011}{2010}\right)\)

\(B=\left(1-\frac{1}{2010}\right)x\left(1-\frac{2}{2010}\right)x\left(1-\frac{3}{2010}\right)x...x\left(0\right)x\left(1-\frac{2011}{2010}\right)\)

\(B=0\)

Lee Vincent
7 tháng 5 2017 lúc 10:21

Phúc 6A phải k

Đào Trọng Luân
7 tháng 5 2017 lúc 11:01

xét các thừa số tích B có: \(1-\frac{2010}{2010}=0\)

Nên B = 0

Đinh Đức Hùng
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
29 tháng 2 2016 lúc 6:25

trong dãy tích A sẽ có phân số \(1-\frac{2010}{2010}=1-1=0\)

=>A=0

sắp phải rời xa mái trườ...
29 tháng 2 2016 lúc 7:49

a =0 

nhé bạn

Nguyễn Ngọc Quý
29 tháng 2 2016 lúc 7:49

\(A=\left(1-\frac{1}{2010}\right)\left(1-\frac{2}{2010}\right).........\left(1-\frac{2010}{2010}\right)\left(1-\frac{2011}{2010}\right)\)

\(A=\left(1-\frac{1}{2010}\right)\left(1-\frac{2}{2010}\right)......0.\left(1-\frac{2011}{2010}\right)\)

A = 0 

Le Phuc Thuan
Xem chi tiết
trần thị anh thư
Xem chi tiết
Trần Thanh Phương
13 tháng 8 2019 lúc 10:52

Xét dạng tổng quát :

\(\sqrt{1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}}=\sqrt{\frac{k^2+1}{k^2}+\frac{1}{\left(k+1\right)^2}}\)

\(=\sqrt{\frac{\left(k^2+1\right)\left(k+1\right)^2+k^2}{k^2\left(k+1\right)^2}}=\sqrt{\frac{k^4+2k^3+3k^2+2k+1}{k^2\left(k+1\right)^2}}\)

\(=\sqrt{\frac{\left(k^2+k+1\right)^2}{k^2\left(k+1\right)^2}}=\frac{k^2+k+1}{k\left(k+1\right)}=1+\frac{1}{k\left(k+1\right)}=1+\frac{1}{k}-\frac{1}{k+1}\)

Áp dụng vào bài toán :

\(A=\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2010^2}+\frac{1}{2011^2}}\)

\(A=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2010}-\frac{1}{2011}\)

\(A=2009-\frac{1}{2011}+\frac{1}{2}\)

p/s: không biết tính có đúng ko nữa, bạn nhớ check lại. Mình nhớ bài này còn có cách khác ngắn hơn nhưng quên rồi :D

Quỳnh Nhi Nguyễn Thuỷ
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
27 tháng 4 2016 lúc 18:44

\(A=\frac{ }{ }sdadsad\text{đ}\text{s}gh\text{d}fg\text{d}\)sf

Hoilamgi
Xem chi tiết
Nguyễn Thị Giang
18 tháng 4 2018 lúc 11:00

Suy ra : A = ( 1 - 1 / 2010 ) . ( 1 - 2 / 2010 ) .... 0 . ( 1 - 2011 / 2010 ) = 0 

Suy ra A = 0

Huỳnh Bảo Tú Thanh
18 tháng 4 2018 lúc 10:58

A = 1. ( 1/2010 + 2/2010 ) - ( 3/2010 + 4/2010 ) - ... - ( 2010/2010 + 2011/2010 )

= 1/2010 - 2011/2010

= -2010/2010