Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NDT Channel
Xem chi tiết
Hưng Việt Nguyễn
Xem chi tiết
to tien cuong
Xem chi tiết
Huy Hoàng
8 tháng 7 2018 lúc 13:08

1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)

ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)

<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)

<=> \(\frac{3x+10}{x^2+2x-3}=0\)

<=> \(3x+10=0\)

<=> \(x=-\frac{10}{3}\)

Trần Hoàng Nam
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 2 2023 lúc 23:07

a: \(=\dfrac{2x^4+x^3-5x^2-3x-3}{x^2-3}\)

\(=\dfrac{2x^4-6x^2+x^3-3x+x^2-3}{x^2-3}\)

\(=2x^2+x+1\)

b: \(=\dfrac{x^5+x^2+x^3+1}{x^3+1}=x^2+1\)

c: \(=\dfrac{2x^3-x^2-x+6x^2-3x-3+2x+6}{2x^2-x-1}\)

\(=x+3+\dfrac{2x+6}{2x^2-x-1}\)

d: \(=\dfrac{3x^4-8x^3-10x^2+8x-5}{3x^2-2x+1}\)

\(=\dfrac{3x^4-2x^3+x^2-6x^3+4x^2-2x-15x^2+10x-5}{3x^2-2x+1}\)

\(=x^2-2x-5\)

L.Q.H Escanor
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 3 2021 lúc 20:47

Ta có: \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)

\(\Leftrightarrow2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)

\(\Leftrightarrow2x^3+8x^2+8x-8x^2=2x^3-16\)

\(\Leftrightarrow2x^3+8x-2x^3+16=0\)

\(\Leftrightarrow8x+16=0\)

\(\Leftrightarrow8x=-16\)

hay x=-2

Vậy: S={-2}

Lưu Thùy Linh
Xem chi tiết
khánh huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 8 2021 lúc 14:00

a: Ta có: \(8x+11-3=5x+x-3\)

\(\Leftrightarrow8x+8=6x-3\)

\(\Leftrightarrow2x=-11\)

hay \(x=-\dfrac{11}{2}\)

b: Ta có: \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)

\(\Leftrightarrow2x\left(x^3+6x^2+12x+8\right)-8x^2=2\left(x^3-8\right)\)

\(\Leftrightarrow2x^4+12x^3+24x^2+16x-8x^2-2x^3+16=0\)

\(\Leftrightarrow2x^4+10x^3+16x^2+16x+16=0\)

\(\Leftrightarrow2x^4+4x^3+6x^3+12x^2+4x^2+8x+8x+16=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x^3+6x^2+4x+8\right)=0\)

\(\Leftrightarrow x+2=0\)

hay x=-2

Nguyễn Lê Phước Thịnh
16 tháng 8 2021 lúc 14:06

c: Ta có: \(\left(x+1\right)\left(2x-3\right)=\left(2x-1\right)\left(x+5\right)\)

\(\Leftrightarrow2x^2-3x+2x-3-2x^2-10x+x+5=0\)

\(\Leftrightarrow-10x+2=0\)

\(\Leftrightarrow-10x=-2\)

hay \(x=\dfrac{1}{5}\)

d: Ta có: \(\dfrac{1}{10}-2\cdot\left(\dfrac{1}{2}t-\dfrac{1}{10}\right)=2\left(t-\dfrac{5}{2}\right)-\dfrac{7}{10}\)

\(\Leftrightarrow\dfrac{1}{10}-t+\dfrac{1}{5}=2t-5-\dfrac{7}{10}\)

\(\Leftrightarrow-t-2t=-\dfrac{57}{10}-\dfrac{3}{10}=-6\)

hay t=2

khánh huyền
Xem chi tiết
Dương Quế Chi
Xem chi tiết
Die Devil
8 tháng 7 2017 lúc 9:02

\(1.\left(x-2\right)\left(x-1\right)=x\left(2x+1\right)+2\)

\(\Leftrightarrow x^2-3x+2=2x^2+x+2\)

\(\Leftrightarrow x^2-2x^2-3x-x=-2+2\)

\(\Leftrightarrow-x^2-4x=0\)

\(\Leftrightarrow x\left(-x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\-x-4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)Vậy S={-4;0}

\(2.\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=8x\)

\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2-8x=0\)

\(\Leftrightarrow x^2+4x+4-\left(x^2-4x+4\right)-8x=0\)

\(\Leftrightarrow x^2+4x+4-x^2+4x-4-8x=0\)

\(\Leftrightarrow0=0\)(luôn đúng vs mọi giá trị của x)

\(3.\left(2x-1\right)\left(x^3-x+1\right)=2x^3-3x^2+16=0\)

\(\Leftrightarrow2x^4-2x^2+2x-x^3+x-1=2x^3-3x^2+16=0\)

\(\Leftrightarrow2x^4-x^3-2x^2+3x-1=2x^3-3x^2+16=0\)

\(\Leftrightarrow2x^4-x^3-2x^3-2x^2+3x^2+3x-1-16=0\)

\(\Leftrightarrow2x^4-3x^3+x^2+3x-17=0\)

Cái này là phương trình bậc 4 lận, Giải hơi mất thời gian