Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TRẦN THÙY TRANG
Xem chi tiết
Tiểu thư họ Trần
Xem chi tiết
Nguyễn Thuỳ Trang
Xem chi tiết
Phương Thảo Nguyễn
Xem chi tiết
Michiel Girl mít ướt
9 tháng 8 2015 lúc 9:17

Dễ thôi:

Khoảng cách là 2

\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(\frac{1}{2}.\left(1-\frac{1}{2017}\right)=\frac{1}{2}.\frac{2016}{2017}=\frac{1008}{2017}\)

 Hồ Tùng Bách
20 tháng 6 2020 lúc 21:10

cảm ơn bạn đã giúp mình!!

Khách vãng lai đã xóa
Trần Thanh Quyên
Xem chi tiết
Sherlockichi Kudoyle
10 tháng 8 2016 lúc 18:31

\(\frac{2016}{1.3}+\frac{2016}{3.5}+\frac{2016}{5.7}+....+\frac{2016}{2015.2017}\)

\(=1008.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\right)\)

\(=1008.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(=1008.\left(1-\frac{1}{2017}\right)\)

\(=1008.\frac{2016}{2017}\)

Văn Đức Kiên
10 tháng 8 2016 lúc 18:34

147852.

Hảii Nhânn
Xem chi tiết
Yeutoanhoc
21 tháng 6 2021 lúc 15:12

`2/(3.5)+2/(5.7)+....+2/(2015.2017)`

`=1/3-1/5+1/5-1/7+....+1/2016-1/2017`

`=1/3-1/2017=2014/6051`

Shiba Inu
21 tháng 6 2021 lúc 15:12

\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{2015.2017}\)

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\)

\(=\dfrac{1}{3}-\dfrac{1}{2017}\)

\(=\dfrac{2017}{6051}-\dfrac{3}{6051}=\dfrac{2014}{6051}\)

\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{2015.2017}\) 

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\) 

\(=\dfrac{1}{3}-\dfrac{1}{2017}\) 

\(=\dfrac{2014}{6051}\)

nguyen khanh huyen
Xem chi tiết
Lê Hiển Vinh
21 tháng 8 2016 lúc 7:34

Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\), ta có:

\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)

\(=\frac{1}{2}.\frac{2016}{2017}=\frac{1008}{2017}\)

nguyen thi lan huong
21 tháng 8 2016 lúc 7:31

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2015}-\frac{1}{2017}+\frac{1}{2017}\)

\(=1-\frac{1}{2017}\)

\(=\frac{2016}{2017}\)

mk đầu tiên đấy

Kim Ngọc Yên
21 tháng 8 2016 lúc 7:31

1008/2017

Nguyễn Thị Hoài Anh
Xem chi tiết
Phạm Ngọc Thạch
28 tháng 4 2015 lúc 14:50

a)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}=\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+...+\left(\frac{1}{99}-\frac{1}{101}\right)\)

                                                               \(=1-\frac{1}{101}=\frac{100}{101}\)

b) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}=\frac{2}{1.3}.\frac{5}{2}+\frac{2}{3.5}.\frac{5}{2}+\frac{2}{5.7}.\frac{5}{2}+...+\frac{2}{99.101}.\frac{5}{2}\)

                                                                \(=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

                                                                \(=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)

lu thanh nhan
21 tháng 3 2016 lúc 18:53

a)100/101

b)250/101

Nguyen Minh Nhat
11 tháng 4 2016 lúc 9:22

A)100/101

B)250/101

Hoàng Đình Nguyên
Xem chi tiết
Ta Thao
14 tháng 4 2016 lúc 13:37

a.2/1.3+2/3.5+2/5.7+................+2/99.101

1-1/3+1/3-1/5+1/5-1/7+....+1/99-1/101

1-1/101

100/101

b.5/1.3+5/3.5+5/5.7+............+5/99.101

5.2/1.3.2+5.2/3.5.2+5.2/5.7.2+........+5.2+99.101.2

5/2(2/1.3+2/3.5+2/5.7+........+2/99.101)

5/2(1-1/3+1/3-1/5+1/5-1/7+........+1/99-1/101)

5/2(1-1/101)

5/2.100/101

250/101