Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Linh
Xem chi tiết
Chuu
29 tháng 5 2022 lúc 16:56

`a)`

Xét △ABH và △EBC có:

BH cạnh chung

\(\widehat{BAH}=\widehat{BEH}\)

\(\widehat{ABH}=\widehat{EBH}\)

`=> △ABH = △EBC`

`b)`

Ta có:

`△ABH = △EBC`

`=> AB = BE`

=> △ABE cân tại B
Xét `△ABE` cân tại B có:

`BH` là đường phân giác

=> `BH` là đường trung trực

`c)`

`Δ ABH = Δ EBC`

=> `AH = HE` (2 cạnh tương ứng) (1)
Xét tam giác HEC vuông tại E
=> `HC > HE` ( vì HC là cạnh huyền)(2)

MÀ `AH = HE`

nên `HA < HC`

`d)` có bị sai đề không vậy bạn

 

 

Chuu
29 tháng 5 2022 lúc 19:22

Sửa đề

d) chứng minh BH vuông góc với IC 

Bài làm:

Xét `△ABE` cân tại `B` có:

`BH` là đường phân giác

`=> BH` là đường cao

`=> BH⊥ IC`

 

 

 

²ᵏ⁷
Xem chi tiết
Nguyễn Viết Ngọc
5 tháng 5 2019 lúc 10:34

hình : tự vẽ

a) Xét hai tam giác vuông BAH và BEH có :

góc ABH = góc EBH ( do BH là đường p/g của góc ABE )

BH là cạnh chung 

nên tam giác BAH = tam giác BEH ( cạnh huyền - góc nhọn )

Nguyễn Viết Ngọc
5 tháng 5 2019 lúc 10:46

c) Do tam giác ABC vuông tại A => góc BAC  = 90 độ

Có : góc BAC + góc CAI = 180 độ ( hai góc kề bù )

(  hay góc BAH + góC HAI )

          90 độ + góc CAI    = 180 độ 

                      => góc CAI =90 độ

Do tam giác ABH = tam giác EBH ( cm phần a ) => AH=EH ( hai cạnh tương ứng )

Do HE vuông góc với BC => góc HEC = 90 độ 

Xét hai tam giác AHI và EHC có :

góc HAI = góc HEC ( = 90độ )

AH=EH ( cm trên )

góc AHI = góc EHI ( hai góc đối đỉnh )

nên tam giác AHI = tam giác EHC ( g.c.g )

Cường Hoàng
Xem chi tiết
sakurakimoto
Xem chi tiết
doquocvi
Xem chi tiết
Mike
5 tháng 5 2019 lúc 19:24

a, xét tam giác ABE và tam giác HBE có : BE chung

góc ABE = góc HBE do BE là phân giác

góc BAE = góc BHE = 90 

=> tam giác ABE = tam giác HBE (ch - gn)

Lê Ngọc Tường Anh
Xem chi tiết

a) Áp dụng Pytago dễ dàng tính được AC=4

b) Xét hai tam giác vuông ABD và HBD có 

BD cạnh chung

góc ABD = góc HBD (BD là phân giác góc B)

Nên hai tam giác trên bằng nhau (cạnh huyền - góc nhọn)

Suy ra AB = BH

AD = DH

Suy ra BD là trung trực của AH (định lý 2)

c) Ý bạn là E là giao điểm của AH và BD?

Hay E là giao điểm của DH và AB?

Khách vãng lai đã xóa
uwerieieiei
Xem chi tiết
uwerieieiei
10 tháng 9 2021 lúc 21:33

các bạn giúp mik với!!!!

Trần Thị Thùy Ly
Xem chi tiết
123ab4567h89
5 tháng 10 2017 lúc 15:50

BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E

a) chứng minh AB=EB

b) chứng minh tam giác BED vuông

c) DE cắt AB tại F, chứng minh AE//FC

BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I

a) chứng minh tam giác IBC cân

b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy

BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm

a)so sánh góc A và góc C

b)chứng minh rằng tam giác ABH = tam giác ACH

c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG

d)tính độ dài AG

e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG

BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F

a)chứng minh tam giác ABE = tam giác DBE

b) chứng minh tam giác BCF cân

c) chứng minh 3 điểm F.D,E thẳng hàng

d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM

BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I

a)chứng minh rằng tam giác BDC = tam giác CEB

b)so sánh góc IBE và góc ICD

c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H

BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm

a)tính BC

b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB

c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE

d) chứng minh BE vuông góc FC

IS
22 tháng 2 2020 lúc 20:02

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Khách vãng lai đã xóa
Quang Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2023 lúc 9:57

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔABE=ΔHBE

b: góc HEC+góc AEH=180 độ

góc AEH+góc ABH=180 độ

=>góc HEC=góc ABH=2*góc ABE

c: AE=EH

EH<EC

=>AE<EC