Cm a^4-3a^3+6a^2-5a+3>0
2.b)4√8-√18-6√1/2-√200
3.a)(a√6/a+√2a/3+√6a):√6a (a>0)
b)2/3a-1*√3a^2(9a^2-6a+1) (1/3>a>0)
2b: \(=8\sqrt{2}-3\sqrt{2}-3\sqrt{2}-10\sqrt{2}=-8\sqrt{2}\)
3:
a: \(=\left(\sqrt{6a}+\dfrac{\sqrt{6a}}{3}+\sqrt{6a}\right):\sqrt{6a}\)
=1+1/3+1
=7/3
b: \(=\dfrac{2}{3a-1}\cdot\sqrt{3}\cdot a\cdot\left|3a-1\right|\)
\(=\dfrac{2\sqrt{3}\cdot a\left(1-3a\right)}{3a-1}=-2a\sqrt{3}\)
Chứng Minh với mọi số nguyên a
Câu 1: (a^4 +6a^3 + 11a^2 +6a) chia hết cho 24
Câu 2: (a^5 - 5a^3 + 4a) chia hết cho 120
Câu 3: (3a^4 -14a^3 +21a^2 - 10a) chia hết cho 24
câu 1 bạn phân tích ra là a(a+1)(a+2)(a+3) là 4 số tự nhiên liên tiếp nên chia hết cho 24.
câu 2 bạn phân tích ra thành (a-2)(a-1)a(a+1)(a+2) là 5 số tự nhiên liên tiếp nên chia hết cho 120
bài 3 phân tích ra thành:(a-2)(a-1)a(3a-5) nhưng mình k biết nó chia hết cho 24 ở chỗ nào
Đơn giản các bt sau
(7x-4)×(2x+3)-13x
a^3-(a^2-3a) ×(a+3)
(2a-b) ×(b+4a) +2a×(b-3a)
5b×(2x-b) +(x-6a) ×(5a+2x )
chứng minh rằng với mọi số nguyên a
a^4 + 6a^3 + 11a^2 + 6a chia hết cho 24
a^5 - 5a^3 + 4a chia hết cho 120
3a^4 -14a^3 + 21a^2 -10a chia hết cho 24
tính giá trị biểu thức Q với a=-0,25
Q=(7 a^3-6a^2+ 5a +1)+(5a^3+7a^2+3a)-(10 a^2 +a^2+ 8 a)
1.Tìm STN a để các số sau nguyên tố cung nhau
a)4a+3 và 2a+3
b)7a+4 và 5a+6
c)8a+3 và 3a+1
d)6a+1 và 5a-3
e)9a+4 và 4a+3
g)5a+4 và 6a+5
h)9a+24 và 3a+4
i)7a+13 và 2a+4
2.Tìm STN a biết:
a)5a+1 chia hết cho 7
b)2a+9 chia hết cho 11
c)25a+3 chia hết cho 53
a; 4a + 3 và 2a + 3
Gọi ƯCLN(4a + 3; 2a + 3) = d
Theo bài ra ta có:
\(\left\{{}\begin{matrix}4a+3⋮d\\2a+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\4a+6⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\4a+3-4a-6⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\\left(4a-4a\right)+\left(2-6\right)⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\4⋮d\end{matrix}\right.\) ⇒ d \(\in\) Ư(4) = {1; 2; 4}
Nếu d = 2 ⇒ 4a + 3 ⋮ 2 ⇒ 3 ⋮ 2 (vô lý)
Nếu d = 4 ⇒ 4a + 3 ⋮ 4 ⇒ 3 ⋮ 4 (vô lý)
Vậy d = 1 ⇒ (4a + 3; 2a + 3) = 1
Hay 4a + 3 và 2a + 3 là hai số nguyên tố cùng nhau với mọi giá trị của a.
Bài 1 đơn giant cacd biểu thức sau
a. (7x-4)×(2x+3)-13x
b. a^3-(a^2-3a) ×(a+3)
c. (2a-b) ×(b+4a) +2a×(b-3a)
d. 5b×(2x-b) +(x-6a) ×(5a+2x)
\(\left(7x-4\right)\left(2x+3\right)-13x\)
\(=14x^2+21x-8x-12-13x\)
\(=14x^2-12\)
\(a^3-\left(a^2-3a\right)\left(a+3\right)\)
\(=a^3-\left(a^3+3a^2-3a^2-9a\right)\)
\(=a^3-a^3-3a^2+3a^2+9a\)
\(=9a\)
\(\left(2a-b\right)\left(b+4a\right)+2a\left(b-3a\right)\)
\(=2ab+8a^2-b^2-4ab+2ab-6a^2\)
\(=\)\(2a^2-b^2\)
\(5b\left(2x-b\right)+\left(x-6a\right)\left(5a+2x\right)\)
\(=10bx-5b^2+5ax+2x^2-30a^2-12ax\)
\(=2x^2-30a^2-5b^2+10bx-7ax\)
Chuyển biểu thức toán học sang Pascal và ngược lại 1. a+b/a-b
2. S=pi.R^2
3. V=√2gh
4. 4x^2+2y/2 - 3a/4a+b
5. √3a+b > 5(a+b)^2
6. 5a^2+b/6 - 5a/6a+b
7. |a+b|>0
8. Sin^2(x) + Cos^2(x)=1
9. x+y/2.z
1:
Biểu thức toán học: \(\frac{a+b}{a-b}\)
Biểu thức pascal: (a+b)/(a-b)
2:
Biểu thức toán học: \(S=pi.r^2\)
Biểu thức pascal: S=pi*sqr(r)
3:
Biểu thức toán học: \(V=\sqrt{2}GH\)
Biểu thức pascal: V=sqrt(2)*g*h
4:
Biểu thức toán học: \(\frac{\frac{4x^2+2y}{2-3a}}{4a+b}\)
Biểu thức pascal: (\(4\cdot x^2+2\cdot y\))/(2-3*a)/(4*a+b)
5:
Biểu thức toán học: \(\sqrt{3a+b}>5\left(a+b\right)^2\)
Biểu thức pascal:\(\sqrt{3\cdot a+b}>5\cdot\left(a+b\right)^2\)
6:
Biểu thức toán học: \(\frac{\frac{5a^2+b}{6-5a}}{6a+b}\)
Biểu thức pascal: (5*sqr(a)+b)/(6-5*a)/(6*a+b)
7:
Biểu thức toán học: \(\left|a+b\right|>0\)
Biểu thức pascal: abs(a+b)>0
8:
Biểu thức toán học: \(sin\left(x^2\right)+cos\left(x^2\right)=1\)
Biểu thức pascal: sin(sqr(x))+cos(sqr(x))=1
9:
Biểu thức toán học: \(\frac{x+y}{2z}\)
Biểu thức pascal: (x+y)/(2*z)
Rút gọn biểu thức:
D=-3a-{-(-4a+5)+[-(5-6a)+(-12-4a)]}
E=-(2a+4)-{[-2a-(4-10a)+(5a-3)]-(-12+3a)