Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lưu Khánh Nhật
Xem chi tiết
Demngayxaem
Xem chi tiết
Nguyễn Thiên Kim
20 tháng 4 2017 lúc 23:06

\(a.\)Cho \(g\left(x\right)=0\)\(\Rightarrow\)                                            \(x^2+x+1=0\)
                                             \(\Rightarrow\)                       \(x^2+0,5x+0,5x+3+7=0\)
                                             \(\Rightarrow\)         \(\left(x^2+0,5x\right)+\left(0,5x+3\right)+7=0\)
                                             \(\Rightarrow\)       \(x\left(x+0,5\right)+0,5\left(x+0,5\right)+7=0\)
                                             \(\Rightarrow\)                         \(\left(x+0,5\right)\left(x+0,5\right)+7=0\)
                                             \(\Rightarrow\)                                                \(\left(x+0,5\right)^2+7=0\)
                                             \(\Rightarrow\)                                                          \(\left(x+0,5\right)^2=-7\)
mà \(\left(x+0,5\right)^2\ge0\)\(\forall x\in R\) \(\Rightarrow\) không có giá trị của x
                                                                        \(\Rightarrow\) \(g\left(x\right)\) vô nghiệm

\(b.\)Cho \(h\left(x\right)=0\)\(\Rightarrow\)                                               \(x^2+7x+10=0\)
                                             \(\Rightarrow\)                \(x^2+3,5x+3,5x+7+3=0\)
                                             \(\Rightarrow\)  \(\left(x^2+3,5x\right)+\left(3,5x+7\right)+3=0\)
\(\Rightarrow\)                                             \(\Rightarrow\)\(x\left(x+3,5\right)+3,5\left(x+3,5\right)+3=0\)            
                                             \(\Rightarrow\)                 \(\left(x+3,5\right)\left(x+3,5\right)+3=0\)
                                              \(\Rightarrow\)                                       \(\left(x+3,5\right)^2+3=0\)
mà  \(\left(x+3,5\right)^2\ge0\)\(\forall x\in R\)   \(\Rightarrow\)không có giá trị của x

                                                                          \(\Rightarrow\)   h(x) vô nghiệm

  

Hồng Tân Minh
20 tháng 4 2017 lúc 23:14

G(x)=x2+x +1

=x2+1/2x+1/2x+1/4+3/4

=x(x+1/2)+1/2(x+1/2)+3/4

=(x+1/2)2+3/4

Dễ c/m nó vô nghiệm

h(x)=x2+7x+10

Ở đây có một cái mẹo này:

đầu tiên, ta phải phán đoán xem đa thức này là có hay ko có nghiệm. Nếu có nghiệm thì sẽ làm theo côg thức khác, còn nếu đa thức ko có nghiệm thỉ làm như sau:

-Ta đưa về dạng x2+x+n(n thuộc tập R)(hoặc là x2-x+n cx đc, miễn sao là phải có 3 hạng tử như trên)

-Sau đó ta tách x ra làm đoi, n tách ra 2 cái giống hệt phần hệ số của x đc tách ra, còn thừa thì kệ nó

- nhóm vào rồi ta đc 1 form như sau: (x+phần tách của n)2+phần thừa của n rồi c/m vô nghiệm dễ như ăn cơm

Áp dụng vào h(x) ta đc như sau:

h(x) =(x+3,5)2+3

g(x) ta đoán đc là nó có nghiệm

g(x)=2x2-x-4x+2=0

=(2x2-x)-(4x-2)=0

=x(2x-1)-2(2x-1)=0

=(2x-1)(x-2)=0

suy ra 2x-1=0 hoặc x-2=0

suy ra x=0,5 hoăc x=2

Nguyễn Thị Phương Hiền
Xem chi tiết
nguyendinhthuong
Xem chi tiết
uzumaki naruto
28 tháng 4 2017 lúc 21:54

Thu gọn: M(x) = 4x^3 + 2x^4 - x^2 - x^3 + 2x^2 - x^4 +1 - 3x^3 = x^4 + x^2 +1 

Do x^4 lớn hơn hoặc = 0 và x^2 lớn hơn hoặc = 0 vs mọi x =>  x^4 + x^2 +1 vô nghiệm

thanh nguyen
28 tháng 4 2017 lúc 21:54

\(M\left(x\right)=4^3+2x^4-x^2-x^3+2x^2-x^4+1-3x^3\)

\(M\left(x\right)=x^4+x^2+1\)

Vì : \(x^4\ge0\forall x\)

      \(x^2\ge0\forall x\)

\(\Rightarrow x^4+x^2\ge0\forall x\Rightarrow x^4+x^2+1>0\forall x\)

=> M(x) vô nghiệm

uzumaki naruto
28 tháng 4 2017 lúc 21:55

à thêm nữa là x^4 + x^2 + 1 lớn hơn 0 vs mọi x rồi mới kết luận nha bn

Phạm Xuân Thắng
Xem chi tiết
Hquynh
4 tháng 5 2023 lúc 21:26

\(Câu8\)

\(a,A=\dfrac{1}{2}x^3\times\dfrac{8}{5}x^2=\left(\dfrac{1}{2}\times\dfrac{8}{5}\right)x^{3+2}=\dfrac{4}{5}x^5\)

b, \(P\left(0\right)=0^2-5.0+6=6\\ P\left(2\right)=2^2-5.2+6=0\)

Câu 9

\(a,A\left(x\right)+B\left(x\right)=5x^3+x^2-3x+5+5x^3+x^2+2x-3\\ =\left(5x^3+5x^3\right)+\left(x^2+x^2\right)+\left(-3x+2x\right)+\left(5-3\right)\\ =10x^3+2x^2-x+2\)

\(b,H\left(x\right)=A\left(x\right)-B\left(x\right)=5x^3+x^2-3x+5-\left(5x^3+x^2+2x-3\right)\\ =5x^3+x^2-3x+5-5x^3-x^2-2x+3\\ =\left(5x^3-5x^3\right)+\left(x^2-x^2\right) +\left(-3x-2x\right)+\left(5+3\right)\\ =-5x+8\)

\(H\left(x\right)=0\\ \Rightarrow-5x+8=0\\ \Rightarrow x=\dfrac{8}{5}\)

vậy nghiệm của đa thức là \(x=\dfrac{8}{5}\)

Linh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 4 2022 lúc 7:55

a: \(f\left(-2\right)=5\cdot4-8-8=4\)

b: \(f\left(x\right)+g\left(x\right)=6x^2+2x-8\)

c: Đặt G(x)=0

=>x(x-2)=0

=>x=0 hoặc x=2

Huỳnh Trần Thảo Nguyên
Xem chi tiết
Die Devil
7 tháng 4 2017 lúc 7:38

\(a.\)\(x^2+3x=0\)

\(\Leftrightarrow x\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)

\(b.\)\(5x^3-4x=0\)

\(\Leftrightarrow x\left(5x^2-4\right)=0\)

\(c.\)\(\left(x+2\right)\left(7-4x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\7-4x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{7}{4}\end{cases}}}\)

\(d.\)\(2x\left(x+1\right)-x-1=0\)

\(\Leftrightarrow2x\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}}\)

Nguyễn Hữu Quang
Xem chi tiết
Giáp Thanh Hải
24 tháng 6 2023 lúc 20:23

 

 

a) Để tìm nghiệm của đa thức (x-2)(4-3x), ta giải phương trình (x-2)(4-3x) = 0. Khi đó, ta có hai trường hợp:

x - 2 = 0 hoặc 4 - 3x = 0 x = 2 hoặc x = 4/3

Vậy nghiệm của đa thức (x-2)(4-3x) là x = 2 hoặc x = 4/3.

b) Để tìm nghiệm của đa thức x^2 - 4, ta giải phương trình x^2 - 4 = 0. Khi đó, ta có:

(x-2)(x+2) = 0 x = 2 hoặc x = -2

Vậy nghiệm của đa thức x^2 - 4 là x = 2 hoặc x = -2.

c) Để tìm nghiệm của đa thức x^2 + 7, ta không thể giải phương trình x^2 + 7 = 0 vì không có số nào bình phương bằng 7. Vì vậy, đa thức này không có nghiệm trong tập số thực.

d) Để tìm nghiệm của đa thức x^2 + 5x, ta giải phương trình x(x+5) = 0. Khi đó, ta có:

x = 0 hoặc x = -5

Vậy nghiệm của đa thức x^2 + 5x là x = 0 hoặc x = -5.

e) Để tìm nghiệm của đa thức x^2 + 5x - 6, ta giải phương trình (x+6)(x-1) = 0. Khi đó, ta có:

x + 6 = 0 hoặc x - 1 = 0 x = -6 hoặc x = 1

Vậy nghiệm của đa thức x^2 + 5x - 6 là x = -6 hoặc x = 1.

f) Để tìm nghiệm của đa thức x^2 + x + 1, ta không thể giải phương trình x^2 + x + 1 = 0 bằng phương pháp giải bình phương trình bởi vì hệ số của x^2 là 1 và không thể phân tích thành tích của hai số nguyên tố khác nhau. Vì vậy, đa thức này không có nghiệm trong tập số thực.

h) Để tìm nghiệm của đa thức 7x^2 + 11x + 4, ta giải phương trình 7x^2 + 11x + 4 = 0 bằng cách sử dụng công thức giải phương trình bậc hai. Khi đó, ta có:

Δ = b^2 - 4ac = 11^2 - 474 = 121 - 112 = 9 x1 = (-b + Δ) / 2a = (-11 + 3) / 14 = -4/7 x2 = (-b - Δ) / 2a = (-11 - 3) / 14 = -7/2

Vậy nghiệm của đa thức 7x^2 + 11x + 4 là x = -4/7 hoặc x = -7/2.

 

(tham khảo

20:22  

 

Giáp Thanh Hải
24 tháng 6 2023 lúc 20:29

a) Để tìm nghiệm của đa thức (x-2)(4-3x), ta giải phương trình (x-2)(4-3x) = 0. Khi đó, ta có hai trường hợp:

x - 2 = 0 hoặc 4 - 3x = 0 x = 2 hoặc x = 4/3

Vậy nghiệm của đa thức (x-2)(4-3x) là x = 2 hoặc x = 4/3.

b) Để tìm nghiệm của đa thức x^2 - 4, ta giải phương trình x^2 - 4 = 0. Khi đó, ta có:

(x-2)(x+2) = 0 x = 2 hoặc x = -2

Vậy nghiệm của đa thức x^2 - 4 là x = 2 hoặc x = -2.

c) Để tìm nghiệm của đa thức x^2 + 7, ta không thể giải phương trình x^2 + 7 = 0 vì không có số nào bình phương bằng 7. Vì vậy, đa thức này không có nghiệm trong tập số thực.

d) Để tìm nghiệm của đa thức x^2 + 5x, ta giải phương trình x(x+5) = 0. Khi đó, ta có:

x = 0 hoặc x = -5

Vậy nghiệm của đa thức x^2 + 5x là x = 0 hoặc x = -5.

e) Để tìm nghiệm của đa thức x^2 + 5x - 6, ta giải phương trình (x+6)(x-1) = 0. Khi đó, ta có:

x + 6 = 0 hoặc x - 1 = 0 x = -6 hoặc x = 1

Vậy nghiệm của đa thức x^2 + 5x - 6 là x = -6 hoặc x = 1.

f) Để tìm nghiệm của đa thức x^2 + x + 1, ta không thể giải phương trình x^2 + x + 1 = 0 bằng phương pháp giải bình phương trình bởi vì hệ số của x^2 là 1 và không thể phân tích thành tích của hai số nguyên tố khác nhau. Vì vậy, đa thức này không có nghiệm trong tập số thực.

h) Để tìm nghiệm của đa thức 7x^2 + 11x + 4, ta giải phương trình 7x^2 + 11x + 4 = 0 bằng cách sử dụng công thức giải phương trình bậc hai. Khi đó, ta có:

Δ = b^2 - 4ac = 11^2 - 474 = 121 - 112 = 9 x1 = (-b + Δ) / 2a = (-11 + 3) / 14 = -4/7 x2 = (-b - Δ) / 2a = (-11 - 3) / 14 = -7/2

Vậy nghiệm của đa thức 7x^2 + 11x + 4 là x = -4/7 hoặc x = -7/2.

 

tham khảo

20:22  
Giáp Thanh Hải
24 tháng 6 2023 lúc 20:29

 

20:22

a) Để tìm nghiệm của đa thức (x-2)(4-3x), ta giải phương trình (x-2)(4-3x) = 0. Khi đó, ta có hai trường hợp:

x - 2 = 0 hoặc 4 - 3x = 0 x = 2 hoặc x = 4/3

Vậy nghiệm của đa thức (x-2)(4-3x) là x = 2 hoặc x = 4/3.

b) Để tìm nghiệm của đa thức x^2 - 4, ta giải phương trình x^2 - 4 = 0. Khi đó, ta có:

(x-2)(x+2) = 0 x = 2 hoặc x = -2

Vậy nghiệm của đa thức x^2 - 4 là x = 2 hoặc x = -2.

c) Để tìm nghiệm của đa thức x^2 + 7, ta không thể giải phương trình x^2 + 7 = 0 vì không có số nào bình phương bằng 7. Vì vậy, đa thức này không có nghiệm trong tập số thực.

d) Để tìm nghiệm của đa thức x^2 + 5x, ta giải phương trình x(x+5) = 0. Khi đó, ta có:

x = 0 hoặc x = -5

Vậy nghiệm của đa thức x^2 + 5x là x = 0 hoặc x = -5.

e) Để tìm nghiệm của đa thức x^2 + 5x - 6, ta giải phương trình (x+6)(x-1) = 0. Khi đó, ta có:

x + 6 = 0 hoặc x - 1 = 0 x = -6 hoặc x = 1

Vậy nghiệm của đa thức x^2 + 5x - 6 là x = -6 hoặc x = 1.

f) Để tìm nghiệm của đa thức x^2 + x + 1, ta không thể giải phương trình x^2 + x + 1 = 0 bằng phương pháp giải bình phương trình bởi vì hệ số của x^2 là 1 và không thể phân tích thành tích của hai số nguyên tố khác nhau. Vì vậy, đa thức này không có nghiệm trong tập số thực.

h) Để tìm nghiệm của đa thức 7x^2 + 11x + 4, ta giải phương trình 7x^2 + 11x + 4 = 0 bằng cách sử dụng công thức giải phương trình bậc hai. Khi đó, ta có:

Δ = b^2 - 4ac = 11^2 - 474 = 121 - 112 = 9 x1 = (-b + Δ) / 2a = (-11 + 3) / 14 = -4/7 x2 = (-b - Δ) / 2a = (-11 - 3) / 14 = -7/2

Vậy nghiệm của đa thức 7x^2 + 11x + 4 là x = -4/7 hoặc x = -7/2.

20:22  
Hoàng Quốc Chính
Xem chi tiết
Nguyễn Huy Tú
30 tháng 4 2021 lúc 9:04

a, \(P+\left(5x^2+9xy\right)=6x^2+9xy-x\)

\(\Rightarrow P=x^2-x\)

Gỉa sử : x = 1 là nghiệm của đa thức 

Thay x = 1 vào P ta được : \(1-1=0\)*đúng*

Vậy x = 1 là nghiệm của đa thức trên 

b, Với \(x\ge\frac{1}{7}\)đa thức có dạng : \(A=2x^2+7x-1-5+x-2x^2=8x-6\)(1) 

Với \(x< \frac{1}{7}\)đa thức có dạng : \(A=2x^2-7x+1-5+x-2x^2=-6x-4\)(2) 

TH1 : Với đa thức (1) ta có : \(8x-6=2\Leftrightarrow x=1\)

TH2 : Với đa thức (2) ta có : \(-6x-4=2\Leftrightarrow x=-1\)

Khách vãng lai đã xóa