giải phương trình nghiệm nguyên dương sau:
\(6x^2+5y^2=74\)
nhanh nhanh nha mk cần gấp lứm
tìm nghiệm nguyên dương của phương trình 6x^2+5y^2=74
6x2+5y2=74
6x2+5y2-74=0
(6x2-54)+(5y2-20)=0
6(x2-9)+5(y2-4)=0
6(x+3)(x-3)+5(y+2)(y-2)=0
để 6x2+5y2-74=0
=>6(x+3)(x-3)=0 <=> x+3=0 <=> x=-3
x-3=0 <=> x=3
5(y+2)(y-2)=0 <=> y+2=0 <=> y=-2
y-2=0 <=> y=2
Vậy nghiệm của phương trình là: x\(\varepsilon\)(-3;3);y\(\varepsilon\)(-2;2)
Bạn làm sai rồi! a+b=0 => a=0,b=0?????
Bài này có nhiều cách làm, có thể chặn từng cái rồi xét tính chia hết!
tìm các cặp số nguyên dương (x,y) thoả mãn : \(6x^2+5y^2=74\)
Cuu Cần gấp !!!!![]()
Cho phương trình: x^2-px+q=0. Trong đó, p vá q là các số nguyên tố. Biết phương trình có 2 nghiệm dương phân biệt. Chứng minh p^2 +q^2 là 1 số nguyên tố
Mk cần gấp, mấy bn giải giúp mk nha
Giải phương trình nghiệm nguyên:
a. \(3x^2-4y^2=13\)
b. \(6x^2+5y^2=74\)
c. \(x^2+x+13=y^2\)
Giải phương trình sau :
(x2+9)(x2-8x+17)=6x
GIẢI NHANH HỘ MK NHA
\(\Leftrightarrow\left(x^2+9\right)\left(x^2-8x+16+1\right)=6x\)
\(\Leftrightarrow\left(x^2+9\right)\left(x^2-8x+16\right)+x^2+9-6x=0\)
\(\Leftrightarrow\left(x^2+9\right)\left(x-4\right)^2+\left(x-3\right)^2=0\)
\(\left(x^2+9\right)\left(x-4\right)^2\ge0\)
Dấu "=" xảy ra <=> x=4
\(\left(x-3\right)^2\ge0\)
Dấu "=" xảy ra <=> x=3
\(\Rightarrow\left(x^2+9\right)\left(x-4\right)^2+\left(x-3\right)^2\ge0\)
Dấu "=" xảy ra <=> đồng thời x=4 và x=3 -> vô nghiệm
tìm nghiệm nguyên của phương trình :
\(3x^2+4y^2+6x+3y-4=0\)
giúp nhanh mình sẽ tick ạ ( đầy đủ lời giải nha !)
x,y là số nguyên tố đúng ko? bn có nhiueeuf câu hỏi nên mik trả lời nhầm.(ko phait thì thui nhé)
\(\left(3x^2+6x+3\right)+\left(3y^2+3y+1\right)+y^2-8=0\)
\(\Leftrightarrow3\left(x+1\right)^2+3\left(y+\frac{1}{2}\right)^2-\frac{9}{4}-8=0\)
\(\Leftrightarrow12\left(x+1\right)^2+3\left(y+1\right)^2=41\)
\(\Rightarrow12\left(x+1\right)^2\le41\Rightarrow\left(x+1\right)^2\le3\Rightarrow x+1\in\left\{1;0;-1\right\}\Rightarrow x\in\left\{0;-1;-2\right\}\)
Bạn làm nốt
đâu một \(y^2\)rồi zZz Cool Kid_new zZz
TÌM NGHIỆM NGUYÊN DƯƠNG CỦA PHƯƠNG TRÌNH
\(X^2+3XY+Y^2=X^2Y^2\)
CẦN GẤP AI GIÚP NHANH HỘ VỚI
\(x^2+3xy+y^2=x^2y^2^{^{\left(1\right)}}\)
\(\Leftrightarrow x^2+2xy+y^2=x^2y^2-xy\)
\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy-1\right)\)
Vì xy(xy-1) là 2 số nguyên liên tiếp có tích là 1 số chính phương
=> xy=0 hoặc xy-1 =0
+) Nếu xy=0 thay vào (1) ta có
\(x^2+y^2=0\Leftrightarrow x=y=0\)
+)Nếu xy-1 =0 hay xy=1 ta có
\(x^2+y^2+3=1\Leftrightarrow x^2+y^2=-2\left(loại\right)\)
Vậy x=0 ; y=0
Đoạn số chính phương rồi suy ra xy mình chưa hiểu lắm,bạn gthich tí dc 0
\(x^{2} y^{2} - x^{2} - 3 x y - y^{2} = 0\) \(x^{2} y^{2} - x^{2} - 3 x y - y^{2} = 0 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x^{2} \left(\right. y^{2} - 1 \left.\right) - 3 x y - y^{2} = 0\)
Bước 2: Nhận xétĐây là phương trình đối xứng về \(x\) và \(y\).Xét nghiệm nguyên dương nhỏ, vì các số lũy thừa tăng nhanh, nghiệm thường nhỏ.Bước 3: Thử với \(x = 1\)\(1 + 3 \cdot 1 \cdot y + y^{2} = 1 \cdot y^{2} \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 1 + 3 y + y^{2} = y^{2} \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 3 y + 1 = 0\)
Không có nghiệm dương.Bước 4: Thử với \(x = 2\)\(4 + 3 \cdot 2 \cdot y + y^{2} = 4 y^{2} \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 4 + 6 y + y^{2} = 4 y^{2} \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 3 y^{2} - 6 y - 4 = 0\)
Chia 1/1, nhận dạng phương trình bậc 2: \(3 y^{2} - 6 y - 4 = 0\)\(\Delta = \left(\right. - 6 \left.\right)^{2} - 4 \cdot 3 \cdot \left(\right. - 4 \left.\right) = 36 + 48 = 84\)Không phải là bình phương hoàn hảo → không có nghiệm nguyênBước 5: Thử với \(x = 3\)\(9 + 9 y + y^{2} = 9 y^{2} \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 9 + 9 y + y^{2} = 9 y^{2} \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 8 y^{2} - 9 y - 9 = 0\)
\(\Delta = \left(\right. - 9 \left.\right)^{2} - 4 \cdot 8 \cdot \left(\right. - 9 \left.\right) = 81 + 288 = 369\)Không phải bình phương hoàn hảo → không có nghiệm nguyênBước 6: Thử với \(y = 1\)\(x^{2} + 3 x + 1 = x^{2} \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 3 x + 1 = 0 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = - \frac{1}{3}\)
❌ Không nguyên dương
Bước 7: Thử với \(y = 2\)\(x^{2} + 6 x + 4 = 4 x^{2} \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 3 x^{2} - 6 x - 4 = 0\)
\(\Delta = \left(\right. - 6 \left.\right)^{2} - 4 * 3 * \left(\right. - 4 \left.\right) = 36 + 48 = 84\)Không nguyênBước 8: Thử với \(y = 3\)\(x^{2} + 9 x + 9 = 9 x^{2} \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 8 x^{2} - 9 x - 9 = 0\)
\(\Delta = \left(\right. - 9 \left.\right)^{2} - 4 * 8 * \left(\right. - 9 \left.\right) = 81 + 288 = 369\)Không nguyênBước 9: Kết luậnPhương trình không có nghiệm nguyên dương nhỏ.Xét tiếp \(x \geq 1 , y \geq 1\) lũy thừa tăng nhanh → \(x^{2} y^{2} > x^{2} + 3 x y + y^{2}\) cho mọi \(x , y \geq 2\)Kiểm tra nhanh:\(x^{2} y^{2} - \left(\right. x^{2} + 3 x y + y^{2} \left.\right) = x^{2} y^{2} - x^{2} - y^{2} - 3 x y = x y \left(\right. x y \left.\right) - x^{2} - y^{2} - 3 x y = x y \left(\right. x y - 3 \left.\right) - x^{2} - y^{2}\)
Với \(x , y \geq 2\), \(x y \left(\right. x y - 3 \left.\right) - x^{2} - y^{2} > 0\) → Không thể bằng 0✅ Kết luận: phương trình không có nghiệm nguyên dương.
Số nghiệm nguyên dương của phương trình 3x+5y=501 là bao nhiêu [giải từng bước nha]
ta có : 3x chia hết cho 3 (1)
501 chia hết cho 3 (2)
từ (1) và (2) => 5y chia hết cho 3
mà (3;5) = 1 ( nguyên tố cùng nhau )
nên y chia hết cho 3
vậy y = 3k
thay y=3k vào phương trình ta có :
3x + 15k = 501
\(<=>x=\frac{501-5k}{3}\)
Giải phương trình nghiệm nguyên sau :
a) 8x2 - 5y2 +10x +4 = 0
b) 4x2 +y2 -4x -6y -24 =0
Các bạn giúp mik với mk đang cần gấp
3 người đầu tiên trả lời mk k