K=4/2x4+4/4x6+4/6x8+...+4/2008x2010
F=1/18+1/54+1/108+...+1/990
a) 1/1x3 + 1/3x5 + 1/5x7 +...+ 1/2007x2009
b) 3^2/20x23 + 3^2/23x26 +...+ 3^2/77x80
c) 4/2x4 + 4/4x6 + 4/4x8 +...+ 4/2008x2010
d) 1/18 + 1/54 + 1/108 +...+ 1/990
e) B= 1 + 3 +3^2 +...+ 3^100
f) A= 2^0 + 2^1 + 2^2 +...+ 2^2010
g) S= 1 + 2 + 2^2 + 2^3 +...+ 2^2008 / 1 - 2^2009
4/2x4+4/4x6+4/6x8+...+4/18 x20 = ?
Gọi tổng là A ta có :
A x 2 = 2/2.4 + 2/4.6 + 2/6.8 + ... + 2/18.20
A x 2 = 1/2 - 1/4 - 1/4 - 1/6 + 1/6 - 1/8 + ... + 1/18 - 1/20
A x 2 = 1/2 - 1/20
A x 2 = 9/20
A = 9/20 : 2
A = 9/40
Các bạn ơi , giúp mình với :
a) 1/1x3 + 1/3x5 + 1/5x7 +...+ 1/2007x2009 b) 1/18 + 1/54 + 1/108 +....+ 1/990
c) 4/2x4 + 4/4x6 + 4/4x8 +...+ 4/2008x2010 d) 32/20x23 + 32/23x26 +...+32/77x80
Ai giải nhanh nhất mình tích cho !
a) \(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{2007x2009}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2007}-\frac{1}{2009}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{2009}\right)=\frac{1}{2}\cdot\frac{2008}{2009}=\frac{1004}{2009}\)
....
các bài cn lại bn lm tương tự nha
b, \(\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)
3A = \(\dfrac{1}{6}+\dfrac{1}{18}+...+\dfrac{1}{330}\)
3A-A = \(\dfrac{1}{6}-\dfrac{1}{990}\)
2A = 82/495
A =82/495 : 2
A=41/495
c, \(\dfrac{4}{2.4}+\dfrac{4}{4.6}+\dfrac{4}{6.8}+...+\dfrac{4}{2008.2010}\)
A= \(\dfrac{4}{2}.\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{2008.2010}\right)\)
A= \(\dfrac{4}{2}.\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
A= \(\dfrac{4}{2}.\left(\dfrac{1}{2}-\dfrac{1}{1010}\right)\)
A= \(\dfrac{4}{2}.\dfrac{252}{505}\)
A= \(\dfrac{504}{505}\)
tính : a, 4/2x4+4/4x6+4/6x8+......+4/16x18+4/18x20
b, 1/2+1/6+1/12+1/20+......+1/90
\(a,\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+....+\frac{4}{16.18}+\frac{4}{18.20}\)
\(=\frac{4}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{18}-\frac{1}{20}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(=2.\frac{9}{20}\)
\(=\frac{9}{10}\)
\(b,\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
a, \(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+..+\frac{4}{16.18}+\frac{4}{18.20}\)
\(=\frac{4}{2}\cdot\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{16}-\frac{1}{18}+\frac{1}{18}-\frac{1}{20}\right)\)
\(=2\cdot\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(=2\cdot\frac{9}{20}=\frac{9}{10}\)
b, \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}=\frac{9}{10}\)
Tính : K = 4/2.4 + 4/4.6 + 4/6.8 +....+ 4/2008.2010
F = 1/18 + 1/54 + 1/108 + ...+ 1/990
K:2=2/2.4+2/4.6+2/6.8+...+2/2008.2010
=1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010
=1/2-1/2010
=502/1005
K=502/1005.2
=1004/1005
F=1/3.6+1/6.9+1/9.12+...+1/30.33
3F=3/3.6+3/6.9+3/9.12+...+1/30.33
=1/3-1/6+1/6-1/9+1/9-1/12+...+1/30-1/33
=1/3-1-33
=10/33
F=10/33:3
=10/99
Bn sai câu K = 4/2.4 + 4/4.6 + 4/6.8 +....+ 4/2008.2010
Ko biết làm
4/ 2x4 +4/4x6+4/6x8+.......+4/2008x2010
\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)=\frac{2.2004}{2010}=\frac{2004}{1005}\)
\(=\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+...+\frac{2}{1004\cdot1005}\)
\(=2\cdot\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{1004\cdot1005}\right)\)
\(=2\cdot\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1004}-\frac{1}{1005}\right)\)
\(=2\cdot\left(1-\frac{1}{1005}\right)=2\cdot\frac{1004}{1005}=\frac{2008}{1005}\)
Tính :
N = ( 1/2x4 + 1/4x6 + 1/6x8 + 1/8x10 + ....... + 1/98 X 100 ) : ( 1/2 + 1/4 + 1/8 + 1/16 + ........ + 1/512 )
4/2x4 + 4/4x6 + 4/6x8 + .... + 4/2014x 2016
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2014.2016}=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2014.2016}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2014}-\frac{1}{2016}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{2016}\right)=2.\left(\frac{1008}{2016}-\frac{1}{2016}\right)=2.\frac{1007}{2016}=\frac{1007}{1008}\)
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+\frac{4}{2014.2016}\)
\(=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2014.2016}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2014}-\frac{1}{2016}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{2016}\right)\)
\(=2.\frac{1007}{2016}\)
\(=\frac{1007}{1008}\)
tính nhanh 4/2x4 + 4/4x6 + 4/6x8 + .... + 4/2008x 2010
Đặt:A = \(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+.....+\frac{4}{2008.2010}\)
=> A = 2.(\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+.....+\frac{2}{2008.2010}\)
=> A = 2.(\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.....+\frac{1}{2008}-\frac{1}{2010}\)
=> A = 2.(\(\frac{1}{2}-\frac{1}{2010}\))
=> A = 2.\(\frac{502}{1005}\)
=> A = \(\frac{1004}{1005}\)
đặt A= \(\frac{4}{2.4}+\frac{4}{4.6}+...+\frac{4}{2008.2010}\)
=> 1/2.A=\(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2008.2010}\)
= \(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\)
=\(\frac{1}{2}-\frac{1}{2010}\)
=\(\frac{502}{1005}\)
Vậy biểu thức cần tìm có giá trị là \(\frac{502}{1005}\)
nhầm nha
=> A= \(\frac{502}{1005}:\frac{1}{2}\)=\(\frac{1004}{1005}\)