cho x,y là các số tự nhiên thỏa mãn x+4y chia hết cho 13.Chứng minh rằng 10a+y chia hết cho 13
cho x, y là các số tự nhiên thỏa mãn x+4y chia hết cho 13. chứng minh rằng 10x+y chia hết cho 13
Bạn tham khảo nhé !
Ta thấy : x+4y ⋮13
=> 10.(x + 4y ) ⋮13
=> 10x + 40y ⋮ 13
=> 10x + y + 39y ⋮ 13
mà 39y chia hết cho 13
=>10x+y ⋮ 13
x+4y13
=>10.(x+4y)13
10x+40y13
10x+y+39y13
mà 39y chia hết cho 13
=>10x+y13
Cho x,y là các số tự nhiên thỏa mãn x+4y chia hết cho 13.Chứng minh rằng 10x + y chia hết cho 13.
Mình đang cần gấp.
Ta có 4(10x+y)-(x+4y)=40x+4y-x-4y=39x chia hết cho 13
Do x+4y chia hết cho 13 => 4(10x+y) chia hết cho 13 => vì ƯCLN(4;13)=1
=> 10x+y chia hết cho 13
Ta thấy : x+4y ⋮13
=> 10.(x + 4y ) ⋮13
=> 10x + 40y ⋮ 13
=> 10x + y + 39y ⋮ 13
mà 39y chia hết cho 13
=>10x+y ⋮ 13
Cho a;b là các số tự nhiên thỏa mãn a+4b chia hết cho 13.Chứng minh rằng 10a+b cũng chia hết cho 13
Ta có : a + 4b chia hết cho 13
Suy ra : 10(a + 4b) chia hết cho 13
<=> 10a + 40b chia hết cho 13
<=> [(10a + b) + 39b] chia hết cho 13
Mà b là số tự nhiên và 39 chia ết cho 13 nên 39b chia hết cho 13
Vậy 10a + b chia hết cho 13 (đpcm)
Vì a + 4b chia hết cho 13 nên 10(a+4b) chia hết cho 13
10a+40b chia hết cho 13
(10a+b)+39b chia hết cho 13
Mà 39 chia hết cho 13 nên 39b chia hết cho 13
=> 10a+b chia hết cho 13
Vây: nếu a+4b chia hết cho 13 thì 10a+bchia hết cho 13
Vì : a+4b chia hết cho 13 => 10(a+4b) chia hết cho 13
Ta có : 10(a+4b) chia hết cho 13
=10a+40b chia hết cho 13
=(10a+b)+39b chia hết cho 13
Vì 39b chia hết cho 13 => 10a+b chia hết cho 13
Cho 2 số tự nhiện a, b thỏa mãn a + 4b chia hết cho 13. Chứng minh rằng 10a + b chia hết cho 13.
Đặt A = a + 4b; B = 10a + b
Xét hiệu: 10A - B = 10.(a + 4b) - (10a + b)
= 10a + 40b - 10a - b
= 39b
Do A chia hết cho 13 nên 10A chia hết cho 13 mà 39b chia hết cho 13
Do đó, B chia hết cho 13 hay 10a + b chia hết cho 13 (đpcm)
cho a;b là các số tự nhiên thỏa mãn:a+4b chia hết cho 13. chứng minh 10a+b cũng chia hết cho 13
GIÚP MIK VỚI !!!!!!!!!
Có a+4b chia hết cho 13
=> a+13a+4b+13b chia hết cho 13
=> 14a+17b chi hết cho 13
=> 10a+4a+b+16b chia hết cho 13
=> (10a+b)+(4a+16b) chia hết cho 13
=> (10a+b)+4(a+4b) chia hết cho 13
Mà a+4b chia hết cho 13 => 4(a+4b) chia hết cho 13
=> Để (10a+b)+4(a+4b) chia hết cho 13 thì 10a+b chia hết cho 13 (đpcm)
k cho mik nha
bài 1: chứng minh rằng
nếu 10a + b chia hết cho 13 thì a + 4b chia hết cho 13. Với a,b là các số tự nhiên.
Do \(\left(10a+b\right)⋮13\Rightarrow10a+b=13k\left(k\in N\right)\)
\(\Rightarrow b=13k-10a\)
\(\Rightarrow a+4b=a+4.\left(13k-10a\right)\)
\(=a+52k-40a\)
\(=52k-39a\)
\(=13\left(4k-3a\right)⋮13\)
Vậy \(\left(10a+b\right)⋮13\Rightarrow\left(a+4b\right)⋮13\)
cho a;b là các số tự nhiên thỏa mãn a+5b chia hết cho 7
Chứng minh rằng 10a+b chia hết cho 7
Ta cóL
a+5b chia hết cho 7
=> 10(a+5b)=10a+50b chia hết cho 7
Mà 49b chia hết cho 7
=> 10a+50b-49b chia hết cho 7
=> 10a+b chia hết cho 7
cho a, b là số tự nhiên chứng minh rằng a+4b chia hết cho 13 klhi và chỉ khi 10a+b chia hết cho 13
Ta xét tổng: A= 3( a+ 4b)+( 10a+ b)
A= 3a+ 12b+ 10a+ b.
A= 13a+ 13b\(⋮\) 13.
=> A\(⋮\) 13.
Vì 10a+ b\(⋮\) 13.
=> 3( a+ 4b)\(⋮\) 13.
Mà 3 không\(⋮\) 13.
=> a+ 4b\(⋮\) 13.
Vậy a+ 4b\(⋮\) 13 khi và chỉ khi 10a+ b\(⋮\) 13.
Đặt A= a + 4b
B= 10a + b
Ta có: 10A- B= 10(a +4b) - (10a +b)
= 10a + 40b - 10a - b
= (10a - 10a) + (40b - b)
= 0 + 39b
= 39b
= 13 . 3b chia hết cho 13
=> 10A - B chia hết cho 13
- Nếu A chia hết cho 13 =>10A chia hết cho 13 => B chia hết cho 13
hay a + 4b chia hết cho 13 =>10a + b chia hết cho 13
- Nếu B chia hết cho 13 => 10A chia hết cho 13 mà (10, 13) = 1 => A chia hết cho 13
hay 10a + b chia hết cho 13 => a + 4b chia hết cho 13
Vậy a + 4b chia hết cho 13 <=> 10a + b chia hết cho 13.
Chúc bạn học tốt!
Đặt A= a + 4b
B= 10a + b
Ta có: 10A- B= 10(a +4b) - (10a +b)
= 10a + 40b - 10a - b
= (10a - 10a) + (40b - b)
= 0 + 39b
= 39b
= 13 . 3b chia hết cho 13
=> 10A - B chia hết cho 13
- Nếu A chia hết cho 13 =>10A chia hết cho 13 => B chia hết cho 13
hay a + 4b chia hết cho 13 =>10a + b chia hết cho 13
- Nếu B chia hết cho 13 => 10A chia hết cho 13 mà (10, 13) = 1 => A chia hết cho 13
hay 10a + b chia hết cho 13 => a + 4b chia hết cho 13
Vậy a + 4b chia hết cho 13 <=> 10a + b chia hết cho 13
CHÚC BẠN HỌC TỐT.
Cho biết : a + 4b chia hết cho 13 ( a,b là số tự nhiên)
Chứng minh rằng: 10a + b chia hết cho 13
Ta có : 13a + 13b chia hết cho 13 và a + 4b chia hết cho 13 => 3a + 12b chia hết cho 13
=> ( 13a + 13b ) - ( 3a + 12b ) chia hết cho 13
=> 10a + b chia hết cho 13
=> đpcm