Chứng minh rằng:\(-0,7.\left(43^{43}-17^{17}\right)\)là một số nguyên
chứng minh rằng
\(-0,7\left(43^{43}.17^{17}\right)\:\) là một số nguyên
Chứng minh rằng :
\(-0,7\cdot\left(43^{43}-17^{17}\right)\)
là 1 số nguyên
Chứng minh rằng -0,7(43^43-17^17)là một số nguyên
Chứng minh rằng -0,7(43^43-17^17) là một số nguyên
43^43 có chữ số tận cùng là 7
17^17 có chữ số tận cùng là 7
suy ra 43^43-17^17 có chữ số tận cùng là 0
suy ra -0,7(43^43-17^17) là số nguyên
Chứng minh rằng: \(-0,7\left(43^{43}-17^{17}\right)\) là một số nguyên.
Ta có:
\(43^{43}=43^{40}.43^3=\left(43^4\right)^{10}.43^3\)
\(=\left(...1\right)^{10}.\left(...7\right)=\left(...1\right).\left(...7\right)=\left(...7\right)\left(1\right)\)
Lại có:
\(17^{17}=17^{16}.17^1=\left(17^4\right)^4.17\)
\(=\left(...1\right)^4.\left(...7\right)=\left(...1\right).\left(...7\right)=\left(...7\right)\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow-0,7\left(43^{43}-17^{17}\right)=-0,7\left(...7-...7\right)\)
\(=-0,7.\left(...0\right)\)
Mà: \(\left\{{}\begin{matrix}-0,7\in Z\\\left(...0\right)\in Z\end{matrix}\right.\)\(\Rightarrow-0,7.\left(...0\right)\in Z\)
Vậy \(-0,7\left(43^{43}-17^{17}\right)\) là một số nguyên (Đpcm)
Chứng minh rằng số -0,7(4343-1717) là một số nguyên.
Chứng minh rằng: \(-0,7.\left(43^{43}-17^{17}\right)\) là một số nguyên
\(=-\frac{7}{10}\left(43^{43}-17^{17}\right)\)
\(43^{43}=43^{4.10+1}.43^2\) có tận cùng là \(7\)
\(17^{17}=17^{4.4+1}\) có tận cùng là \(7\)
\(\Rightarrow43^{43}-17^{17}\) có tận cùng là 0
\(\Rightarrow\left(43^{43}-17^{17}\right)⋮10\Rightarrow\) số đã cho là số nguyên
Chứng minh rằng :-0,7.(43^43-17^17) là 1 số nguyên
cm (43^43-17^17) tận cùng là 0
=> .... cả phép tính nguyên
chứng minh rằng số : -0,7(43^43-17^17) là 1 số nguyên.