cho C= 4+4^2 +4^3+4^4+...........+4^2015+4^2016
chứng minh C chia hết cho 105
Bài 1:
a) Cho C = 4 + 4^2 + 4^3 + 4^4 + ... + 4^2015 + 4^2016 . Chứng minh C chia hết cho 21 và 105
b) Chứng minh rằng với mọi số tự nhiên khác 0 có số lượng các ước tự nhiên là một số lẻ thì số tự nhiên đó là số chính phương
Bài 1:
a) C = 4 + 42 + 43 + 44 + ... + 42015 + 42016
C = (4 + 42 + 43) + (44 + 45 + 46) + ... + (42014 + 42015 + 42016)
C = 4(1 + 4 + 42) + 44 ( 1 + 4 + 42) + ...+ 42014(1 + 4 + 42)
C = 4 . 21 + 44 . 21 + ... + 42014 . 21
C = 21(4 + 44 + ... + 42014) \(⋮\)21
=> C \(⋮\)21
C = 4 + 42 + 43 + 44 + 45 + ... + 42015 + 42016
C = (4 + 42 + 43 + 44 + 45 + 46) + ... + (42011 + 42012 + 42013 + 42014 + 42015 + 42016)
C = 4(1 + 4 + 42 + 43 + 44 + 45) + ... + 42011(1 + 4 + 42 + 43 + 44 + 45)
C = 4 . 1365 + 47 . 1365 + ... + 42011 . 1365
C = 1365(4 + 47 + ... + 42011)
mà 1365 \(⋮\)105
=> C \(⋮\)105
Đề bài C=4+4^2+4^3+4^4+.....+4^2014+4^2015+4^2016
a) CMR C chia hết 21, 105
Trình bày nhé các bạn Đúng minh sẽ tick
THANKS!!!!!!!!!!!!!!!!!!!!!
Ta có: C = 4 + 42 + 43 + ..... + 42016
=> C = (4 + 42 + 43) + ..... + (42014 + 42015 + 42016)
=> C = 4.(1 + 4 + 16) + .... + 42014.(1 + 4 + 16)
=> C = 4.21 + ..... + 42014.21
=> C = 21.(4 + .... + 42014) chai ết cho 21
Cho A = 1 + 4 + 4^2 + 4^3 +...+ 4^11 chứng minh:
a) A chia hết cho 21
b) A chia hết cho 105
c) A chia hết cho 4097
a)A=1+4+4/\2+.........+4/\11
=(1+4+4/\2)+.....+(4/\9+4/\10+4/\11)
=21+..............+4/\9.(1+4+4/\2)
=21+..+4/\9.21
=(1+4/\3+....+4/\9).21chia hết cho 21
Cho C = \(4^1+4^2+4^3+4^4+..+4^{2016}\) .
Chứng minh C chia hết cho 105. help me
Cách làm như sau:
-Chứng minh C chia hết cho 5 bằng cách nhóm 2 số vào một cặp
-Chứng minh C chia hết cho 21 bằng cách nhóm 3 số vào một cặp
Mà 21 và 5 nguyên tố cùng nhau =>C chia hết cho 21.5 => C chia hết cho 105(đpcm)
Ta có :
\(C=4^1+4^2+4^3+4^4+...+4^{2016}\)
\(C=\left(4^1+4^2\right)+\left(4^2+4^3\right)+...+\left(4^{2015}+4^{2016}\right)\)
\(C=4\left(1+4\right)+4^2\left(1+4\right)+...+4^{2015}\left(1+4\right)\)
\(C=4.5+4^2.5+...+4^{2015}.5\)
\(C=5\left(4+4^2+...+4^{2015}\right)⋮5\) \(\left(1\right)\)
Lại có :
\(C=4^1+4^2+4^3+4^4+...+4^{2016}\)
\(C=\left(4^1+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+...+\left(4^{2014}+4^{2015}+4^{2016}\right)\)
\(C=4\left(1+4+16\right)+4^4\left(1+4+16\right)+...+4^{2014}\left(1+4+16\right)\)
\(C=4.21+4^4.21+...+4^{2014}.21\)
\(C=21\left(4+4^4+...+4^{2014}\right)⋮21\) \(\left(2\right)\)
Từ (1) và (2) suy ra : \(C⋮5\) và \(C⋮21\)
\(\Rightarrow\)\(C⋮5.21=105\)
\(\Rightarrow\)\(C⋮105\)
Vậy \(C⋮105\)
Chúc bạn học tốt ~
Cho C=4+4^2+4^3+4^4+...+4^2015+4^2016 Chứng minh rằng C\(⋮\)105
C=4+4^2+4^3+...+4^2015+4^2016
C= (4+4^2+4^3+4^4+4^5+4^6)+(4^7+4^8+4^9+4^10+4^11+4^12)+...+(4^2011+4^2012+4^2013+4^2014+4^2015+4^2016)
C=(4+4^2+4^3+4^4+4^5+4^6)+4^6*(4+4^2+4^3+4^4+4^5+4^6)+...+4^2010*(4+4^2+4^3+4^4+4^5+4^6)
C=(4+4^2+4^3+4^4+4^5+4^6)*(1+4^6+...+4^2010)
C=105*52*(1+4^6+...+4^2010
Từ đó C chia hết cho 105
chứng minh rằng:1+4+4^2 +4^3 +..+ 4^59 chia hết cho 105
A=4+4^2+4^3+...+4^2015+4^2016
chứng minh A chia hết cho 5
Cho A=1+4+42+....+411.Chứng minh rằng:
a) A chia hết cho 21
b) A chia hết cho 105
c) A chia hết cho 4097
Ai làm đúng mình k cho
a) C = 3 + 3^2 + 3^3 + 3^4 + ....+ 3^119 + 3^120
chứng minh rằng tổng hiệu sau chia hết cho 4
b) chứng minh A = 1 + 5 +5^2 + ..... + 5^402 + 5^403 + 5^404 chia hết cho 31
c) chứng minh D = 4 + 4^2 + 4^3 + 4^4 +... + 4^2011 + 4&2012 chia hết cho 5
c)D=4+42+43+44+...+42012
D=(4+42)+(43+44)+...+(42011+42012)
D=4.5+43.5+45.5+...+42011.5
D=5.(4+43+42011)
=>D chia hết cho 5
=>ĐPCM
b)
A=(1+5+52)+(53+54+55)+...(5402+5403+5404)
A=31.1+31.53+...+31.5402
A=31.(1+53+...+5402)
=>A chia hết cho 31
=>Đâu phải con ma