Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Gia Hân
Xem chi tiết
Ngô Thọ Thắng
Xem chi tiết
Nguyễn Văn Tuấn
21 tháng 2 2022 lúc 15:52

S=1+5^2+5^3+...+5^2010
S=1+(5^1+5^2)+...+(5^2009+5^2010)
S=1+5(1+5)+5^3(1+5)+...+5^2009(1+5)
S=1+5.6+5^3.6+...+5^2009.6
S=1+6(5+5^3+5^5+...+5^2009)
Ta có 6(5+5^3+...+5^2009) chia hết cho 2 nên S chia 2 dư 1
S=1+6(5+...+5^2009)=1+6.5(1+5^2+5^4+...+5^2008)
S=1+30(5^2+...+5^2008)
Ta có 30(1+5^2+...+5^2008) chia hết cho 10 nên S chia 10 dư 1

Khách vãng lai đã xóa
Ngô Thọ Thắng
Xem chi tiết
Ngô Thọ Thắng
Xem chi tiết
Ngô Thọ Thắng
Xem chi tiết
Ngô Thọ Thắng
Xem chi tiết
Tran Le Khanh Linh
29 tháng 2 2020 lúc 12:28

\(S=1+5+5^2+5^3+5^4+...+5^{2010}\)

\(\Leftrightarrow S=1+\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{2009}+5^{2010}\right)\)

\(\Leftrightarrow S=1+5\left(1+5\right)+5^3\left(1+5\right)+....+5^{2009}\left(1+5\right)\)

\(\Leftrightarrow S=1+5\cdot6+5^3\cdot6+...+5^{2009}\cdot6\)

\(\Leftrightarrow S=1+6\left(5+5^3+...+5^{2009}\right)\)

Mà \(6\left(5+5^3+....+5^{2009}\right)⋮2\)

=> S chia 2 dư 1

Khách vãng lai đã xóa
Tạ Thị Bích Huệ
Xem chi tiết
ShuShi
Xem chi tiết
ShuShi
Xem chi tiết