Tìm các giá trị nguyên của n để phân số (6n-3) ( 3n+1) có giá trị là số nguyên
Tìm các giá trị nguyên của n để phân số 6n-3/3n+1 có giá trị là số nguyên
Tìm các giá trị nguyên của n để các phân số sau có giá trị là số nguyên
a)A=3n+4/n-1
b)6n-3/3n+1
a)Để A có giá trị nguyên thì 3n+4 chia hết cho n-1
=>3(n-1)+7 chia hết cho n-1
=> n-1 thuộc Ư(7)={1;7;-1;-7}
Phần cuối bn tự làm nha
Còn câu b làm tương tự
a) Từ đề bài, ta có:
\(A=\frac{3n+4}{n-1}=\frac{3\left(n-1\right)+7}{n-1}=3+\frac{7}{n-1}\)
\(\Rightarrow\left(n-1\right)\inƯ\left(7\right)\)
\(\Rightarrow\left(n-1\right)\in\left\{\pm1;\pm7\right\}\)
\(\Rightarrow n\in\left\{2;0;-6;8\right\}\)
b) \(\frac{6n-3}{3n+1}=\frac{2\left(3n+1\right)+5}{3n+1}=2+\frac{5}{3n+1}\)
\(\Rightarrow\left(3n+1\right)\inƯ\left(5\right)\)
\(\Rightarrow\left(3n+1\right)\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{\frac{-2}{3};0;-2;\frac{4}{3}\right\}\)
Tìm các giá trị nguyên của n để các phân số sau có giá trị là số nguyên
a)A=3n+4/n-1
b)6n-3/3n+1
Tìm các giá trị nguyên của 6n - 3/3n +1 để phân số có giá trị là số nguyên.
Đặt \(A=\frac{6n-3}{3n+1}=\frac{\left(6n+2\right)-2-3}{3n+1}=\frac{2.\left(3n+1\right)-5}{3n+1}\)
\(\Rightarrow A=\frac{2.\left(3n+1\right)}{3n+1}-\frac{5}{3n+1}=2-\frac{5}{3n+1}\)
\(A\in Z\Leftrightarrow\frac{5}{3n+1}\in Z\Leftrightarrow5⋮\left(3n+1\right)\Leftrightarrow\left(3n+1\right)\inƯ\left(5\right)\)
=> 3n + 1 \(\in\){1;-1;5;-5}
Ta có bảng :
3n+1 | 1 | -1 | 5 | -5 |
n | 0 | \(-\frac{2}{3}\) | \(\frac{4}{3}\) | -2 |
Mà \(n\in Z\)=>\(n\in\){0;-2} để phân số \(\frac{6n-3}{3n+1}\in Z\)
để \(\frac{6n-3}{3n+1}\)là số nguyên thì 6n-3\(⋮\)3n-1
ta có \(\orbr{\begin{cases}6n-3⋮3n+1\\3n+1⋮3n+1\end{cases}}\Rightarrow\orbr{\begin{cases}6n-3⋮3n+1\\2\left(3n+1\right)⋮3n+1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}6n-3⋮3n+1\\6n+2⋮3n+1\end{cases}}\)
\(\Rightarrow\left(6n+2\right)-\left(6n-3\right)\)\(⋮3n+1\)
\(5⋮3n+1\)
=>3n+1\(\in\)Ư(5)={-1,-5,1,5}
ta co bang sau
...
Ta có: \(\frac{6n-3}{3n+1}\)=\(\frac{2\left(3n+1\right)-5}{3n+1}\)= 2-\(\frac{5}{3n-1}\)
Từ đó để \(\frac{6n-3}{3n+1}\) \(\varepsilon\)Z thì 3n+1 \(\varepsilon\)Ư(5)
Ta có bảng sau
3n+1 | -5 | -1 | 1 | 5 |
n | -2 | \(\frac{-2}{3}\)(Loại) | 0 | \(\frac{4}{3}\)(Loại) |
Vậy với n\(\varepsilon\){-2;0} thì \(\frac{6n-3}{3n+1}\varepsilon\)Z
Tìm giá trị nguyên của n để phân số M=6n-3/3n+1 có giá trị là số nguyên
Ta có M=6n-3/3n+1=(6n+2)-5/3n+1=2(3n+1)-5/3n+1=2- 5/3n+1
Khi đó M nguyên khi 5/3n+1 nguyên
<=> 3n+1={1;-1;5;-5}
<=> n={0;-2/3;4/3;-2}
Mà n nguyên
=> n={0;-2}
Khi đó M lần lượt nhận các giá trị tương ứng -3;3 đều là các số nguyên
Vậy n={0;-2}
tìm các giá trị nguyên của n để B= 6n-3 : 3n+1 có giá trị là 1 số nguyên
Gọi ước chung là d (d thuộc N*)
ta có 6n+3chia hết cho d
3n+1chia hết cho d
=>6n-3chia hết cho d
6n+2chia hết cho d
=>(6n-3)-(6n+2)chia hết cho d
=>1chia hết cho d
=> d=1
=>n=1
vậy n=1
Tìm các giá trị nguyên của n để phân số \(\frac{6n-3}{3n+1}\)có giá trị là số nguyên.
tìm giá trị nguyên n để phân số A=\(\dfrac{6n-3}{3n+1}\)có giá trị nguyên
Em đăng vào môn Toán nhé!
tìm giá trị nguyên n để phân số A=\(\dfrac{6n-3}{3n+1}\)có giá trị nguyên
A = \(\dfrac{6n-3}{3n+1}\) ( đk : 3n + 1 # 0 ⇒ n # -1/3)
A \(\in\) Z ⇔ 6n - 3 ⋮ 3n + 1
⇒ 6n + 2 - 5 ⋮ 3n + 1
⇒ 2.( 3n + 1) - 5 ⋮ 3n + 1
⇒ 5 ⋮ 3n + 1
⇒ 3n + 1 \(\in\) { -5; -1; 1; 5}
⇒ n\(\in\) {-2; -2/3; 0; 4/3}
vì n \(\in\) Z nên n \(\in\) { -2; 0}
Vậy n \(\in\) { -2; 0}
Tìm các giá trị nguyên của N để phân số 6n-3/3n+1 có giá trị là số nguyên
Giúp mk, độ chính xác 100% nhé !
THANK YOU !
\(=>\frac{6n-2-1}{3n-1}=>\frac{2\left(3n-1\right)}{3n-1}=2\)\(2\frac{2}{3n-1}\)
=> để 6n-1/3n-1 nguyên thì 1/3n-1 là nguyên.
=> 1 chia hết cho 3n-1
=> 3n-1 thuộc {1;-1}