Help me do my homework
\(\frac{4}{5.7}+\frac{4}{7.9}+....+\frac{4}{59.61}\)
Tính\(\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{59.61}\)
Đặt A=như đã cho.
=>1/2A=2/5*7+2/7*9+2/9*11+...+2/59*61.
=>1/2A=1/5-1/7+1/7-1/9+1/9-1/11+...+1/59-1/61.
=>1/2A=1/5-1/61=56/305.
=>A=56/305*2=112/305.
k nha đúng đó.Có j kb nha.
\(B=\frac{4}{5.7}+\frac{4}{7.9}+......+\frac{4}{59.61}\) = ?
Ta có 1/2B=2/5.7+2/7.9+...+2/59.61
1/2B=1/5-1/7+1/7-1/9+1/9-...+1/59-1/61
1/2B=1/5-1/61
1/2B=56/305
B=56/305:1/2
B=112/305
Thuc hien phep tinh sau
\(\frac{11}{5.7}+\frac{11}{7.9}+.......+\frac{11}{59.61}\)
Guip mik voi
HELP ME!!!!!!!!!!!!!!!!!!!!!1
=> \(\Rightarrow\left(\frac{11}{5}-\frac{11}{7}+\frac{11}{7}-\frac{11}{9}+...+\frac{11}{59}-\frac{11}{61}\right):2=\left(\frac{11}{5}-\frac{11}{61}\right):2=\frac{616}{305}:2=\frac{308}{305}\)
Đặt \(A=\frac{11}{5.7}+\frac{11}{7.9}+...+\frac{11}{59.61}\)
\(\Rightarrow2A:11=\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\)
\(\Rightarrow2A:11=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\)
\(\Rightarrow2A:11=\frac{1}{5}-\frac{1}{61}\)
\(\Rightarrow2A:11=\frac{56}{305}\)
\(\Rightarrow2A=\frac{56}{305}.11=\frac{616}{305}\)
\(\Rightarrow A=\frac{616}{305}:2=\frac{308}{305}\)
Vậy kết quả của phép tính trên là \(\frac{308}{305}\)
11/2x(1/5-1/7+1/7+1/9+.....+1/59-1/61)
=11/2x(1/5-1/61)
=11/2x56/305
=308/305
Tính nhanh giá trị biểu thức sau :
\(\frac{4}{5.7}\)+ \(\frac{4}{7.9}\)+ ...+ \(\frac{4}{59.61}\)
Ta có:\(\frac{4}{5.7}+\frac{4}{7.9}+.....+\frac{4}{59.61}\)
\(\Rightarrow2.\left(\frac{2}{5.7}+\frac{2}{7.9}+......+\frac{2}{59.61}\right)\)
\(\Rightarrow2.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{59}-\frac{1}{61}\right)\)
\(\Rightarrow2.\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(\Rightarrow\frac{112}{305}\)
\(\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{59.61}\)
\(=\frac{4.2}{5.7.2}+\frac{4.2}{7.9.2}+...+\frac{4.2}{59.61.2}\)
\(=\frac{4}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)
\(=\frac{4}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}_{ }\right)\)
\(=\frac{4}{2}.\left(\frac{1}{5}-\frac{1}{60}\right)\)
\(=\frac{4}{2}.\frac{11}{60}\)
\(=\frac{11}{30}\)
\(\frac{\text{4}}{5.7}\)+ \(\frac{4}{7.9}\)+...+ \(\frac{4}{59.60}\)
=\(\frac{4}{2}\).( \(\frac{2}{5.7}\)+\(\frac{2}{7.9}\)+...+\(\frac{2}{59.60}\))
=\(\frac{4}{2}\).(\(\frac{1}{5}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{9}\)+...+\(\frac{1}{59}\)-\(\frac{1}{60}\))
=\(\frac{4}{2}\).(\(\frac{1}{5}\)-\(\frac{1}{60}\))
=\(\frac{2}{5}\)-\(\frac{1}{30}\)
=\(\frac{12}{30}\)-\(\frac{1}{30}\)
=\(\frac{11}{30}\)
bài 1 tính
A = \(\frac{2}{3.5}+\frac{2}{5.7}+..............+\frac{2}{37.39}\); B = \(\frac{4}{5.7}+\frac{4}{7.9}+..........+\frac{4}{59.61}\) ; C = \(\frac{4}{5.9}+\frac{4}{9.13}+.................+\frac{4}{41.45}\) Bài 2 chứng minh : \(\frac{m}{b.\left(b+m\right)}=\frac{1}{b}-\frac{1}{b+m}\)
tính tổng S=\(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\)
\(=\frac{1}{5}-\frac{1}{61}=\frac{56}{305}\)
\(S=\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\)
\(S=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\)
\(S=\frac{1}{5}-\frac{1}{61}\)
\(S=\frac{61}{305}-\frac{5}{305}\)
\(S=\frac{56}{305}\)
\(S=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\)
\(S=\frac{1}{5}-\frac{1}{61}\)
\(S=\frac{56}{305}\)
\(A=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\) tìm A
\(\Rightarrow A=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{59.61}\right)\)
\(\Rightarrow A=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+......+\frac{1}{59}-\frac{1}{61}\right)\)
\(\Rightarrow A=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(\Rightarrow A=\frac{3}{2}.\frac{56}{305}\)
\(\Rightarrow A=\frac{84}{305}\)
\(A=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}?\)
=> A= \(\frac{3}{2}\) .( \(\frac{1}{5}\) - \(\frac{1}{7}\) + \(\frac{1}{7}\) - \(\frac{1}{9}\) +...+ \(\frac{1}{59}\) - \(\frac{1}{61}\))
=> A=\(\frac{3}{2}\) . (\(\frac{1}{5}\) - \(\frac{1}{61}\) ) => A= \(\frac{3}{2}\). \(\frac{56}{305}\) = \(\frac{84}{305}\) Vậy A= \(\frac{84}{305}\)
\(A=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\)
\(=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{53}-\frac{1}{61}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=\frac{3}{2}.\frac{56}{305}\)
\(=\frac{84}{305}\)
Tính hợp lý : \(M=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\)
M=3.(\(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-....+\frac{1}{59}-\frac{1}{60}\)\(\frac{1}{61}\))
M= 3.(\(\frac{1}{5}-\frac{1}{61}\))
M=\(\frac{168}{305}\)
\(M=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\)
\(M=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)\)
\(M=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(M=\frac{84}{305}\)