Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 11 2018 lúc 8:10

hotboy2002
Xem chi tiết
Nguyễn Hữu Thế
14 tháng 10 2015 lúc 12:45

rất tiếc em mới học lớp 6

Thành Nguyễn
20 tháng 1 2022 lúc 13:03

dhgxkkkkkkkkkkkkkkkkkkkkk

Khách vãng lai đã xóa
hotboy2002
Xem chi tiết
Thành Nguyễn
20 tháng 1 2022 lúc 13:02

jnymrjd,5

Khách vãng lai đã xóa
Trang Nguyễn Ngọc Kiều
Xem chi tiết
Quỳnh Anh
19 tháng 2 2021 lúc 12:49

Trả lời:

Bài 1: a,

\(A=\left|x-1\right|+3\)

Vì \(\left|x-1\right|\ge0\forall x\)

\(\Rightarrow\left|x-1\right|+3\ge3\forall x\)

Dấu = xảy ra khi x - 1 = 0 \(\Leftrightarrow x=1\)

Vậy GTNN của A = 3 khi x = 1

\(B=\left|x-7\right|-4\)

Vì \(\left|x-7\right|\ge0\forall x\)

  \(\Rightarrow\left|x-7\right|-4\ge-4\forall x\)

Dấu = xảy ra khi x - 7 = 0 \(\Leftrightarrow x=7\)

Vậy GTNN của B = -4 khi x = 7

b, \(C=-\left|x-3\right|+2\)

Vì \(\left|x-3\right|\ge0\forall x\)

\(\Rightarrow-\left|x-3\right|\le0\forall x\)

\(\Rightarrow-\left|x-3\right|+2\le2\forall x\)

Dấu = xảy ra khi x - 3 = 0 \(\Leftrightarrow x=3\)

Vậy GTLN của C = 2 khi x = 3

Khách vãng lai đã xóa
Lê Song Phương
Xem chi tiết
Xyz OLM
3 tháng 2 2023 lúc 21:37

1) Áp dụng bđt Cauchy cho 3 số dương ta có

 \(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)

\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)

\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)

Cộng (1);(2);(3) theo vế ta được

\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)

\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)

\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)

 

Xyz OLM
3 tháng 2 2023 lúc 22:03

2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)

Dấu"=" khi a = 4b

nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)

Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)

Đặt \(\sqrt{a+b}=t>0\) ta được

\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)

\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)

Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)

nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)

khi đó a + b = 1

mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

 

Nguyễn
Xem chi tiết
Nhật Hạ
15 tháng 5 2021 lúc 9:32

Ta có: 3x + y = 1 => y = 1 - 3x

a, Thay y = 1 - 3x vào M, ta có:

\(\Rightarrow M=3x^2+\left(1-3x\right)^2=3x^2+1-6x+9x^2=12x^2-6x+1=3\left(4x^2-2x+\frac{1}{3}\right)\)

\(=3\left(4x^2-2x+\frac{1}{4}+\frac{1}{12}\right)=3\left(2x-\frac{1}{2}\right)^2+\frac{3}{12}=3\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì \(\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow3\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow3\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\forall x\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-\frac{1}{2}=0\\3x+y=1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=1-3x=1-3.\frac{1}{4}=\frac{1}{4}\end{cases}}\)\(\Leftrightarrow x=y=\frac{1}{4}\)

Vậy GTNN M = 1/4 khi x = y = 1/4

b, Thay y = 1 - 3x vào N

\(\Rightarrow N=x\left(1-3x\right)=x-3x^2=-3\left(x^2-\frac{x}{3}+\frac{1}{36}-\frac{1}{36}\right)\)

\(=-3\left(x-\frac{1}{6}\right)^2-3.\left(-\frac{1}{36}\right)=-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\)

Vì \(\left(x-\frac{1}{6}\right)^2\ge0\forall x\)

\(\Rightarrow-3\left(x-\frac{1}{6}\right)^2\le0\forall x\)

\(\Rightarrow-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\le\frac{1}{12}\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{6}=0\\3x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=1-3x=1-3.\frac{1}{6}=\frac{1}{2}\end{cases}}\)

Vậy GTLN N = 1/12 khi x = 1/6 và y = 1/2

Khách vãng lai đã xóa
Lehoangyenvy
Xem chi tiết
Nguyễn Huy Tú
11 tháng 5 2021 lúc 12:39

Áp dụng BĐT Bunhiacopxki dạng phân thức 

\(A\ge\frac{\left(1+\frac{2}{x}+1+\frac{2}{y}\right)^2}{1+1}=\frac{\left[2+2\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2}{2}\)

Theo BĐT : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

hay \(\frac{\left(2+\frac{8}{x+y}\right)^2}{2}=\frac{\left(10\right)^2}{2}=\frac{100}{2}=50\)

Vậy \(A\ge50\)khi \(x=y=\frac{1}{2}\)

Khách vãng lai đã xóa
Nguyễn Hồng Hạnh
Xem chi tiết
Kaya Renger
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

Nguyễn Thùy Duyên
Xem chi tiết
tran ha my
5 tháng 11 2017 lúc 15:17

GTNN là gì z.tui ko  hiểu nên ko giải được!

GTNN là giá trị nhỏ nhất

Neymar jr
6 tháng 4 2018 lúc 19:38

giá trị nhỏ nhất