Cho tam giác ABC có AB>AC từ A hạ AH vuông với BC (H thuộc BC) chứng minh rằng MB>MC
Tam giác ABC có góc B>góc C, gọi AH là đường vuông góc kẻ từ điểm A đến BC (H thuộc BC), M là điểm thuộc đoạn AH
a) So sánh: BH và CH
b) So sánh: MB và MC
c) Chứng minh rằng: AH< AB+AC:2
hung huyen ngu vai
Cho tam giác ABC vuông tại A . Hạ AH vuông góc với AB ( H thuộc BC ) Từ H hạ HE vuông góc với AB ( E thuộc AB ) và HF vuông góc với AC ( F thuộc AC )
a) Chứng minh EF=AH
b) EF cắt AH tại O . Chứng minh OA=OH, OE=OF
c) Chứng minh góc AEF=góc ACB và góc AHE= góc ABC
Cho tam giác ABC có AB < AC. Trên BC lấy M sao cho MB = MC. Trên tia đối của tia MA lấy D sao cho MA = MD.
Từ A hạ AH vuông góc với BC tại H. Trên tia đối của HA lấy điểm E sao cho H là trung điểm AE. Cho K là trung điểm ED.
Chứng minh KM vuông góc BC.
Cho tam giác nhọn ABC có đường cao AH. Từ H kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC).
a) Chứng minh: \(\widehat{AFE}=\widehat{ABC}\)
b) Đường thẳng EF cắt BC tại M. Chứng minh: ME . MF = MB . MC.
c) Cho biết AC= 10 cm, \(\widehat{BAC=60^o}\), \(\widehat{ABC}=80^o\) . Tính độ dài đoạn vuông góc hạ từ A xuống EF.
b) Xét ΔMEB và ΔMCF có
\(\widehat{MEB}=\widehat{MCF}\left(=\widehat{AEF}\right)\)
\(\widehat{M}\) chung
Do đó: ΔMEB\(\sim\)ΔMCF(g-g)
Suy ra: \(\dfrac{ME}{MC}=\dfrac{MB}{MF}\)
hay \(ME\cdot MF=MB\cdot MC\)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(AE\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(AF\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF và ΔACB có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)
\(\widehat{EAF}\) chung
Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)
Suy ra: \(\widehat{AFE}=\widehat{ABC}\)(hai góc tương ứng)
a) Xét ΔAMB vuông tại M và ΔAMC vuông tại M có
AB=AC(ΔABC cân tại A)
AM chung
Do đó: ΔAMB=ΔAMC(cạnh huyền-cạnh góc vuông)
Suy ra: MB=MC(hai cạnh tương ứng)
b) Ta có: ΔAMB=ΔAMC(cmt)
nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
c) Xét ΔDMB vuông tại D và ΔEMC vuông tại E có
MB=MC(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDMB=ΔEMC(cạnh huyền-góc nhọn)
Suy ra: DM=EM(hai cạnh tương ứng)
Xét ΔMDE có MD=ME(cmt)
nên ΔMDE cân tại M(Định nghĩa tam giác cân)
câu 1 : Cho tam giác ABC nhọn có AB<AC kẻ AH vuông góc với BC(H thuộc BC) . Gọi M là điểm nằm giữa A và H , tia BM cắt AC ở D .C/m :DM<DH
câu 2 : Cho tam giác ABC
a, Từ A hạ AH vuông góc với BC(H thuộc BC) C/M AH<(AB+AC)/2
b, Từ B hạ BK vuông góc với AC ( K thuộc AC). TỪ C hạ CI vuông góc với AB(I thuộc AB) C/M AH+BK+CI nhỏ hơn chu vi tam giác ABC
AI LÀM ĐÚNG VÀ NHANH NHẤT MÌNH TICK CHO Ạ .MÌNH CẦN GẤP LẮM Ạ .TKS!
Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. Kẻ AH vuông góc BC ( H thuộc BC)
a) chứng minh tam giác ABH = tam giác ACH
b) Tính độ dài AH
c) Từ H kẻ HD vuông góc với AB (D thuộc AB) kẻ HE vuông góc vs AC ( E thuộc AC). Chứng minh AH là đường trung trục của DE
cho tam giác ABC vuông tại A có AB=9cm,AC=12cm,đường cao AH a/ chứng minh tam giác ABC đồng dạng với tam giác HBA . Tính BC,AH. b/ kẻ HM vuông góc với AB tại M. chứng minh: HM^2=MA*MB c/ MC cắt AH tại I , đường thẳng qua I và song song với AC cắt AB,BC lần lượt tại E,F . CM: IF=IE
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ!!!
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AH=9*12/15=7,2cm
b: ΔHAB vuông tại H có HM vuông góc AB
nên MH^2=MA*MB
Cho Tam giác ABC vuông tại A có AB <AC . Vẽ AH vuông góc với BC (H thuộc BC ),D là điểm trên cạnh AC sao cho AD = AB . Vẽ DE vuông góc với BC (E thuộc BC ) . Chứng minh rằng : Tam giác HAE vuông cân