Cho f(x) = ax^3 + bx^3 + cx +d . biêt f(x) chia het cho v5 Chung minh a,b,c,d chia het cho 5
cho f(x)=ax^2+bx+c
bieets f(x)chia het cho 3 voi moi gia tri cua x. chung minh a,b,c deu chia het cho 3
cho M(x)=ax^3+bx^2+cx+d. biet m(x) chia het cho 3 voi moi x.cm: a,b,c,d chia het cho 3
cho da thuc p(x)=ax^3+bx^2+cx +d cmr a, b c chia het cho 5
cho đa thức f(x)=ax mũ 3 + bx mũ 2 + cx + d (a,b,c,d thuộc z) biết f(x) chia hết cho 5 với mọi x thuộc z . Chứng minh rang : a,b,c,d chia hết cho 5
Ta có: x là số nguyên và x chia hết cho 5
=> \(ax^3\)chia hết cho 5
\(bx^2\)chia hết cho 5
\(cx\)chia hết cho 5
\(d\)chia hết cho 5
Suy ra cả a,b,c,d đều chia hết cho 5
cho đa thức f(x)=ax mũ 3 + bx mũ 2 + cx + d (a,b,c,d thuộc z) biết f(x) chia hết cho 5 với mọi x thuộc z . Chứng minh rang : a,b,c,d chia hết cho 5
Cho f(x)=ax3+bx2+cx+d ( a,b,c,d thuộc Z)
Biết f(x)chia hết cho 5 với mọi giá trị x thuộc Z.
Chứng minh rằng: a, b, c, d chia hết cho 5.
Ta có: \(f\left(x\right)=ax^3+bx^2+cx+d⋮5\forall x\in Z\)
+ Với x=0 ta có \(f\left(0\right)=d⋮5\left(1\right)\)
+ Với x=1 ta có \(f\left(1\right)=a+b+c+d⋮5\left(2\right)\)
+ Với x=-1 ta có \(f\left(-1\right)=-a+b-c+d⋮5\left(3\right)\)
+ Với x=2 ta có \(f\left(2\right)=8a+4b+2c+d⋮5\left(4\right)\)
+ Với x=-2 ta có\(f\left(-2\right)=-8a+4b-2c+d⋮5\left(5\right)\)
Từ (1),(2),(3),(4) và (5) suy ra:
\(\left\{{}\begin{matrix}a+b+c⋮5\\-a+b-c⋮5\end{matrix}\right.\)
\(\Rightarrow\left(a+b+c\right)\left(-a+b-c\right)⋮5\)
\(\Rightarrow\left(a+b+c-a+b-c\right)⋮5\)
\(\Rightarrow2b⋮5\)
\(\Rightarrow b⋮5\) (vì 2 và 5 là 2 số nguyên tố cùng nhau) \(\left(6\right)\)
Từ (1),(2),(4) và (6) \(\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\a+c⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8\left(a+c\right)⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8a+8c⋮5\end{matrix}\right.\)
\(\Rightarrow\left(8a+2c\right)-\left(8a+8c\right)⋮5\Rightarrow6c⋮5\)
\(\Rightarrow c⋮5\) (vì ƯCLN(6,5)=1)
\(\Rightarrow a⋮5\) (vì \(a+c⋮5\) )
Vậy \(a,b,c,d⋮5\)
cho đa thức F(x)=\(ax^3+bx^2+cx+d\) với a,b,c,d là các hệ số nguyên.Biết rằng F(x) chia hết cho 5 với mọi x nguyên.Chướng minh rằng a,b,c,d đều chia hết cho 5
ta có: F(x) chia hết 5 => F(0)= a.0^3 + b.0^2 + c.0 + d chia hết 5
=> 0+0+0+d chia hết cho 5 => d chia hết 5
ta có: F(1)= a.1^3 + b.1^2 +c.1 + d chia hết 5
=> a+b+c+d chia hết 5
Mà d chia hết 5 => a+b+c chia hết 5 (1)
ta có:F(-1)= a.(-1)^3 + b.(-1)^2 + c.(-1) +d chia hết 5
=> -a+b-c+d chia hết 5
Mà d chia hết 5 => -a+b-c chia hết 5 (2)
Từ (1) và (2) => (a+b+c)+(-a+b-c) chia hết 5
=> a+b+c-a+b-c chia hết 5 => 2b chia hết 5 => b chia hết 5
Từ (1) và (2) => (a+b+c)-(-a+b-c) chia hêt 5
=> a+b+c+a-b+c chia hết 5 => 2a+2c chia hết 5 (3)
ta có: F(2)= a.2^3 + b.2^2 + c.2 +d chia hết 5
=> 8a+4b+2c+d chia hết 5
Mà b,d chia hết 5 => 8a+2c chia hết 5 (4)
Từ (3) và (4) => (8a+2c)-(2a+2c) chia hết 5 => 6a chia hết 5 => a chia hết 5
=> c chia hết 5
Vậy...
Đúng thì k nha mina !!
cho ham so y=f(x)=ax2+bx+c voi xyz thuoc z f(x)chia het cho 5 cmr x chia het cho 5 ychia het cho 5 zchia het cho 5
Hàm số f(x) đâu có y,z (y là tên hàm số rồi còn gì)??
ĐK: \(x\inℤ\)
TA có: \(y=f\left(x\right)=ax^2+bx+c⋮5\)
Vậy \(f\left(x\right)=ax^2+bx+c\) có dạng \(5k\) (k nguyên)
Nếu \(x⋮5\Rightarrow x\)có dạng \(5t\)
Thay vào,ta có: \(f\left(x\right)=25at^2+5bt+c=5t\left(5at+b\right)+c=5k\) (1)
Suy ra \(c=5k-5t\left(5at+b\right)=5\left[k-t\left(5at+b\right)\right]\) (2)
Thay (2) và (1) suy ra nếu x chia hết cho 5 thì f(x) chia hết cho 5 (thỏa mãn)
Nếu \(x⋮̸5\Rightarrow x\) có dạng 5t + 1
Thay vào và chứng minh tương tự để suy ra nếu x không chia hết cho 5 thì f(x) không chia hết cho 5 (trái với giả thiết)
Từ đó suy ra đpcm
Cho f(x)=ax^3+bx^2+cx+d với a;;b;c;d thuộc Z
Biết f(x) chia hết cho 3 với mọi giá trị x thuộc Z.
Chứng minh a;b;c;d chia hết cho 3