Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
0o0^^^Nhi^^^0o0

Cho f(x)=ax3+bx2+cx+d ( a,b,c,d thuộc Z)

Biết f(x)chia hết cho 5 với mọi giá trị x thuộc Z.

Chứng minh rằng: a, b, c, d chia hết cho 5.

Nguyễn Thị Thu
15 tháng 8 2017 lúc 21:36

Ta có: \(f\left(x\right)=ax^3+bx^2+cx+d⋮5\forall x\in Z\)

+ Với x=0 ta có \(f\left(0\right)=d⋮5\left(1\right)\)

+ Với x=1 ta có \(f\left(1\right)=a+b+c+d⋮5\left(2\right)\)

+ Với x=-1 ta có \(f\left(-1\right)=-a+b-c+d⋮5\left(3\right)\)

+ Với x=2 ta có \(f\left(2\right)=8a+4b+2c+d⋮5\left(4\right)\)

+ Với x=-2 ta có\(f\left(-2\right)=-8a+4b-2c+d⋮5\left(5\right)\)

Từ (1),(2),(3),(4) và (5) suy ra:

\(\left\{{}\begin{matrix}a+b+c⋮5\\-a+b-c⋮5\end{matrix}\right.\)

\(\Rightarrow\left(a+b+c\right)\left(-a+b-c\right)⋮5\)

\(\Rightarrow\left(a+b+c-a+b-c\right)⋮5\)

\(\Rightarrow2b⋮5\)

\(\Rightarrow b⋮5\) (vì 2 và 5 là 2 số nguyên tố cùng nhau) \(\left(6\right)\)

Từ (1),(2),(4) và (6) \(\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\a+c⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8\left(a+c\right)⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8a+8c⋮5\end{matrix}\right.\)

\(\Rightarrow\left(8a+2c\right)-\left(8a+8c\right)⋮5\Rightarrow6c⋮5\)

\(\Rightarrow c⋮5\) (vì ƯCLN(6,5)=1)

\(\Rightarrow a⋮5\) (vì \(a+c⋮5\) )

Vậy \(a,b,c,d⋮5\)


Các câu hỏi tương tự
0o0^^^Nhi^^^0o0
Xem chi tiết
Linh Lê
Xem chi tiết
Nguyễn Kiều Loan
Xem chi tiết
___Vương Tuấn Khải___
Xem chi tiết
Minh Hoang Hai
Xem chi tiết
Hot girl Quỳnh Anh
Xem chi tiết
Nguyễn Quốc Dũng
Xem chi tiết
Hot girl Quỳnh Anh
Xem chi tiết
Vương Hàn
Xem chi tiết