Cho tam giác abc cân tại a trung tuyến am.Trên tia đối ma lấy d sao cho md=ma
a,Tính số đo góc abd
b,CM tam giác abc=tam giác abd
c,So sánh am và bc
ho tam giác ABC vuông tại A,trung tuyến AM.Trên tia đối MA lấy điểm D sao cho MD=MA.
a) Chứng minh tam giác AMC=DMB
b) Tính số đo góc ABD
c) Chứng minh tam giác ABC=BAD
d) So sánh độ dài AM và BC
a: Xét ΔAMC và ΔDMB có
MA=MD
góc AMC=góc DMB
MC=MB
=>ΔAMC=ΔDMB
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
góc CAB=90 độ
=>ABDC là hcn
=>góc ABD=90 độ
c: Xét ΔABC và ΔBAD có
BA chung
BC=AD
AC=BD
=>ΔABC=ΔBAD
d: AM=1/2AD=1/2BC
Cho tam giác ABC vuông tại A vẽ đường trung tuyến AM.Trên tia đối của tia MA lấy D sao cho MD=MA
a,Tính số đo góc ABD
b,Chứng minh tam giác ABC=Tam giác BAD
c,So sánh đọ dài AM và BC
a) Ta có: Trong một tam giác vuông đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh hyền.
Áp dụng vào bài, ta có:
AM=1/2 BC.\(\Rightarrow\)M là trung điểm của BC => MB=MC=MA
Mà AM=MD => MD=MB=MC
=> tam giác BMD cân tại M
tam giác AMC cân tại M
tam giác AMB cân tại M
Xét tam giác BMD và tam giác AMC có:
BM=MC(chứng minh trên)
\(\widehat{BMD}=\widehat{AMC}\)(2 góc đối đỉnh)
AM=MD(giả thiết)
=> tam giác BMD=tam giác AMC (c-g-c)
=> \(\widehat{DBM}=\widehat{MAC}\)(2 góc tương ứng)
Mà \(\widehat{MAC}+\widehat{MAB}=\widehat{BAC}=90^0\)
Mà \(\widehat{MAB}=\widehat{MBA}\)(do tam giác MAB cân tại M)
\(\Rightarrow\widehat{MAC}+\widehat{MBA}=90^0\)
\(\Rightarrow\widehat{MBD}+\widehat{DMB}=\widehat{ABD}=90^0\)
b) Xét tam giác ABC và tam giác BAD có:
AB-cạnh chung
\(\widehat{BAC}=\widehat{ABD}\left(=90^0\right)\)
AC=BD(do tam giác BMD=tam giác AMC)
=> tam giác ABC= tam giác BAD(c-g-c)
c)
Ta có: Trong một tam giác vuông đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh hyền nên:
AM=1/2 BC
Bài 1:
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Tính số đo của góc ABD
b) Chứng minh: tam giác ABC= tam giác BAD
c) So sánh độ dài AM và BC
Bài 2: Cho tam giác ABC có BM và CN là hai đường trung tuyến cắt nhau tại G. Trên tia đối của tia MB lấy điểm E sao cho ME = MG. Trên tia đối của tia NC lấy điểm F sao cho NF = NG.
a) Chứng minh: EF = BC
b) Chứng minh: tam giác FAE= tam giác BGC
Bài 3: Cho tam giác ABC cân tại A, có AB = AC = 10cm; BC = 8cm. Gọi G là trọng tâm của tam giác ABC. Tính AG, BG, CG.
Thank youuuu những bạn giải quyết giúp mình bài tập :33
2:
a: Xét ΔABC có BM,CN là trung tuyến và G là giao của BM,CN
nên G là trọng tâm
=>BG=2GM và CG=2GN
=>BG=GE và CG=GF
=>G là trung điểm chung của BE và CF
=>BCEF là hình bình hành
=>BC=EF
b: Xét ΔFAE và ΔBGC có
FA=BG
AE=GC
FE=BC
=>ΔFAE=ΔBGC
Cho tam giác ABC vuông tại A,trung tuyến AM.Trên tia đối MA lấy điểm D sao cho MD=MA.
a) Chứng minh tam giác AMC=DMB
b) Tính số đo góc ABD
c) Chứng minh tam giác ABC=BAD
d) So sánh độ dài AM và BC
p/s: Bạn tự vẽ hình nha!! ^ ^
a) Xét \(\Delta\)AMC và \(\Delta\)DMB có:
AM = MD (gt)
\(\widehat{AMC}=\widehat{BMD}\)(hai góc đối đỉnh).
BM = MC (gt)
=> Xét \(\Delta\)AMC = \(\Delta\)DMB (c.g.c)
b) Xét tứ giác ABCD có:
AM = MD (gt)
BM = MC (gt)
\(\widehat{BAC}\)= 90 độ
=> ABCD là hình bình hành (DHNB)
=> \(\Delta ABC=\Delta BAD\)(đpcm).
c) Vì \(\Delta\)ABC vuông tại A, đường trung tuyến AM => AM = 1/2 BC (tính chất đường trung tuyến bằng nửa cạnh huyền trong tam giác vuông).
_Kik nha!! ^ ^
Hic, rất xin lỗi bạn, ý b là Hình Chữ Nhật nha!!
Cho tam giác ABC vuông tại A .Đường trung tuyến AM,trên tia đối của tia MA lấy điểm D sao cho MD=MA
a)Tính số đo góc ABD
b)CM : tam giác ABC= tam giác BAD
c)So sánh AM VÀ BC
Cho tam giác ABC, đường trung tuyến AM.Trên tia đối của tia MA lấy điểm D sao cho MD=MA.
a) Tính số đo góc ABD
b) Chứng minh : tam giác ABC = tam giác BAD
c) So sánh độ dài AM và BC
cho tam giác ABC vuông tại A, trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD=MA
a. Tính số đo góc ABD
b. Chứng minh tam giác ABC = tam giác BAD
c. So sánh AM và BC
Cho tam giác ABC vuông tại A. Kẻ đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD=MA
a) Tam giác MAC=tam giác BAD
b) Tính số đo góc ABD
c) Tam giác ABC=tam giác BAD
d) So sánh độ dài AM và BC
a) tam giác MAC = tam giác BAD theo trường hợp cạnh góc cạnh
Có: MC = MB (AM trung tuyến)
AMC = DMB (2 góc đối đỉnh)
MA = MD (theo giả thiết)
=> 2 tam giác bằng nhau theo trường hợp cạnh góc cạnh
b)
Tam giác ABC có góc A=90 độ
Suy ra: góc ACB+ góc CBA= 90 độ
Mà : góc ACB (hay góc ACM) = DBM (2 tam giác bằng nhau, chứng minh trên)
Suy ra: góc DBM + CBA = 90 độ
Hay DBA=90 độ
1) Cho tam giác ABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD=MA.
a)Tính số đo góc ABD?
b)Chứng minh : Tam giác ABC = Tam giác BAD.
c) So sánh AM và BC.
2) Cho tam giác ABC có đường trung tuyến AM bằng nửa cạnh BC. CMR: góc BAC = 90 độ.