cho cac so a,b>0.CMR: can bac hai cua a + can bac hai cua b > can bac hai cua a+b
Cho cac so duong x, y,z thoa man x+y+z=3. Tim GTLN cua P= can bac hai cua (x+y) + can bac hai cua (y+z) + can bac hai cu(x+z)
Ta có : \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}=1.\sqrt{x+y}+1.\sqrt{y+z}+1.\sqrt{z+x}\)
\(\Rightarrow\left(1.\sqrt{x+y}+1.\sqrt{y+z}+1.\sqrt{z+x}\right)^2\le\left(1^2+1^2+1^2\right)\left(x+y+y+z+z+x\right)=3.2\left(x+y+z\right)=18\)
(Áp dụng bất đẳng thức Bunhiacopxki)
Vậy : Max P = \(3\sqrt{2}\Leftrightarrow\hept{\begin{cases}x+y+z=3\\\sqrt{x+y}=\sqrt{y+z}=\sqrt{z+x}\end{cases}\Leftrightarrow x=y=z=1}\)
áp dụng bất đẳng thức Cô-si cho 2 số dương, ta có:
\(\sqrt{x+y}\)< hoặc =\(\frac{x+y}{2}\)
\(\sqrt{y+z}\)< hoặc =\(\frac{y+z}{2}\)
\(\sqrt{x+z}\)< hoặc =\(\frac{x+z}{2}\)
=>\(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\)< hoặc =\(\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}=x+y+z=3\)
dấu = xảy ra<=>x=y=z
Vậy GTLN của biểu thúc là 3 khi x=y=z
Cho tam giac vuong ABC, có AB=a, AC=b, BC=c [BC la canh huyen].
a ] b=can bac hai cua 5, d=can bac hai cua 8, a=?
b ] a=can bac 2 cua 13, d=7, b=?
thanks!!!
Cho tam giac vuong ABC, có AB=a, AC=b, BC=c [BC la canh huyen].
a ] b=can bac hai cua 5, d=can bac hai cua 8, a=?
b ] a=can bac 2 cua 13, d=7, b=?
thanks!!!
Cho tam giac vuong ABC, có AB=a, AC=b, BC=c [BC la canh huyen].
a ] b=can bac hai cua 5, d=can bac hai cua 8, a=?
b ] a=can bac 2 cua 13, d=7, b=?
thanks!!!
so sanh 4+ can bac hai cua13 va can bac hai cua 39+ canbac hai cua 14
so sanh can bac hai cua 27 - can bac hai của 12 - căn bậc hai của 2016 với -44
đùa à pạn?
Can bậc hai cua (x-1)(x-3)
B,can bac hai cua 4/ x+3
\(a,\)\(\sqrt{\left(x-1\right)\left(x-3\right)}\)
\(đkxđ\Leftrightarrow\left(x-1\right)\left(x-3\right)\ge0\)
\(\orbr{\begin{cases}x-1\ge0;x-3\ge0\\x-1< 0;x-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}x\ge1;x\ge3\\x< 1;x< 3\end{cases}\Rightarrow}\orbr{\begin{cases}x\ge3\\x< 1\end{cases}}}\)
\(b,\)\(\sqrt{\frac{4}{x+3}}\)
\(đkxđ\Leftrightarrow\orbr{\begin{cases}x+3\ne0\\x+3\ge0\end{cases}\Rightarrow x+3>0}\)\(\Rightarrow x>-3\)
tim gia tri lon nhat cua B=7-2.can bac hai cua x -1
\(B=7-2\sqrt{x-1}\), với \(x\ge1\)
Ta có \(2\sqrt{x-1}\ge0\)
\(\Rightarrow7-2\sqrt{x-1}\le7\)
=> B đạt giá trị lớn nhất bằng 7
\(\Leftrightarrow2\sqrt{x-1}=0\)
\(\Rightarrow\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)
Vậy GTLN của B = 7 \(\Leftrightarrow\)x=1
Can bac hai cua 64 co the viet duoi dang nhu sau: \(\sqrt{64}\)= 6+\(\sqrt{4}\)
Hoi co ton tai hay khong cac so co 2 chu so co the viet can bac hai cua chung duoi dang nhu tren va la mot so nguyen? Hay chi ra toan bo cac so do.