Cho tam giác ABC có gócA=70 độ , các đường phân giác BD , CE cắt nhau tại I . Tính góc BIC.
Cho tam giác ABC có góc A = 70 độ. Các phân giác BD,CE cắt nhau tại I. Tính góc BIC.
cho tam giác ABC có BD,CE là 2 đường phân giác cắt nhau tại I. Biết góc A =70 độ. Tính số đo của góc BAI và BIC
cho tam giác ABC có BD , CE là 2 đường phân giác cắt nhau tại I .biết A^ =70 độ. Tính số đo của BAI^ và BIC^
Dân ta phải biết sử ta Cái gì mình không biết mình tra google.
cho tam giác ABC có góc A = 80 độ, các đường phân giác BD của góc B và CE của góc C cắt nhau tại I. Tính số đo góc BIC = ?
(Bạn tự vẽ hình giùm)
Ta có \(\widehat{IBC}=\frac{\widehat{ABC}}{2}\)(BD là tia phân giác của \(\widehat{ABC}\))
và \(\widehat{ICB}=\frac{\widehat{ACB}}{2}\)(CE là tia phân giác của \(\widehat{ACB}\))
=> \(\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}\)
=> \(180^o-\widehat{BIC}=\frac{180^o-\widehat{A}}{2}\)
=> \(180^o-\widehat{BIC}=90^o-\frac{\widehat{A}}{2}\)
=> \(180^o-90^o=\widehat{BIC}-\frac{\widehat{A}}{2}\)
=> \(\widehat{BIC}-\frac{\widehat{A}}{2}=90^o\)
=> \(\widehat{BIC}=90^o+\frac{\widehat{A}}{2}\)
Thay \(\widehat{A}=80^o\)vào biểu thức \(\widehat{BIC}=90^o+\frac{\widehat{A}}{2}\), ta có:
\(\widehat{BIC}=90^o+\frac{80^o}{2}\)
=> \(\widehat{BIC}=90^o+40^o=130^o\)
Ta có ^IBC=^ABC2 (BD là tia phân giác của ^ABC)
và ^ICB=^ACB2 (CE là tia phân giác của ^ACB)
=> ^IBC+^ICB=^ABC+^ACB2
=> 180o−^BIC=180o−^A2
=> 180o−^BIC=90o−^A2
=> 180o−90o=^BIC−^A2
=> ^BIC−^A2 =90o
=> ^BIC=90o+^A2
Thay ^A=80ovào biểu thức ^BIC=90o+^A2 , ta có:
^BIC=90o+80o2
=> ^BIC=90o+40o=130o
Ta có ^IBC=^ABC2 (BD là tia phân giác của ^ABC)
và ^ICB=^ACB2 (CE là tia phân giác của ^ACB)
=> ^IBC+^ICB=^ABC+^ACB2
=> 180o−^BIC=180o−^A2
=> 180o−^BIC=90o−^A2
=> 180o−90o=^BIC−^A2
=> ^BIC−^A2 =90o
=> ^BIC=90o+^A2
Thay ^A=80ovào biểu thức ^BIC=90o+^A2 , ta có:
^BIC=90o+80o2
=> ^BIC=90o+40o=130o
Cho tam giác ABC có góc B= 70° và góc C= 50° . Các đường phân giác BD,CE của tam giác cắt nhau tại I
a/ Tính số đo góc BIC
b/ Chứng minh tứ giác AEID nội tiếp
c/ Chứng minh ID=IE
Tam giác ABC cân tại A có các đường cao BD,CE cắt nhau ở I, biết BIC = 110 độ, tính các góc của tam giác ABC
Xét ΔDBC vuông tại D và ΔECB vuông tại E có
BC chung
\(\widehat{DCB}=\widehat{EBC}\)
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{IBC}=\widehat{ICB}\)
=>ΔICB cân tại I
=>\(\widehat{DBC}=\dfrac{180^0-110^0}{2}=35^0\)
\(\Leftrightarrow\widehat{ACB}=90^0-35^0=55^0\)
\(\Leftrightarrow\widehat{ABC}=55^0\)
hay \(\widehat{BAC}=70^0\)
Cho tam giác ABC có góc ∠ A = 80 o , các đường phân giác BD, CE cắt nhau ở I. Tính (BIC)
A. 90 o
B. 100 o
C. 130 o
D. 110 o
Trong tam giác ABC có:
∠A + ∠(ABC) + ∠(ACB) = 180o ⇒ ∠(ABC) + ∠(ACB) = 180o - 80o = 100o
Mà BI và CI lâ các tia phân giác nên
∠(ABC) + ∠(ACB) = 2.∠(IBC) + 2.∠(ICB) = 2 (∠(IBC) + ∠(ICB) )
Suy ra ∠(IBC) + ∠(ICB) = 50o
Mà ∠(IBC) + ∠(ICB) + ∠(BIC) = 180o ⇒ ∠(BIC) = 130o. Chọn C
Cho tam giác ABC có phân giác BD, CE cắt nhau tại I.
a) Biết góc BIC=120 độ, tính góc A.
b) Biết góc BIC=130 độ, tính góc A
ta có \(\widehat{BIC}=180^0-\widehat{BCI}-\widehat{IBC}=180^0-\frac{\widehat{ABC}+\widehat{ACB}}{2}=180^0-\frac{180^0-\widehat{BAC}}{2}\)
\(\Leftrightarrow\widehat{BIC}=90^0+\frac{\widehat{BAC}}{2}\)
a. góc A = 60 độ
b. góc A = 80 độ
Tam giác ABC có Â = 70 độ , các đường phân giác của B , C cắt nhau tại I , tính góc BIC
+) Góc xAC = góc ABC + ACB (tính chất góc ngoài tam giác)
góc A2 = xAC / 2
=> góc A2 = (góc ABC + C1) / 2 = B1 + ( C1 / 2 ) (Vì góc B1 = ABC /2 )
+) Trong tam giác AIB: góc AIB = 180o - (B1 + A1 + A2)
= 180o - (B1 + A1 +B1 + ( C1 / 2 ) )
= 180o - (2.B1 + A1 + ( C1 / 2 ) )
= 180o - (B + A1 + ( C1 / 2 ))
Mà B + A1 = 180o - C1 = 180o - 70o = 110o; C1 / 2 = 70o/ 2 = 35o
=> góc CIB = 180o - (110o + 35o) = 180o - 145o = 35o