Cho tam giác ABC đều có độ dài cạnh là 6 và G là trọng tâm của tam giác .Tính độ dài đoạn thẳng GA
Cho tam giác ABC ,AM là đường trung tuyến có độ dài 6cm và G là trọng tâm của tam giác ABC .Tính độ dài đoạn thẳng GA
Theo tính chất của trọng tâm thì ta có :
\(AG=\frac{2}{3}AM\)
Mà AM = 6cm
\(\Rightarrow AG=\frac{2}{3}.6=4\left(cm\right)\)
Cho tam giác ABC có M là trung điểm của BC. G là trọng tâm của tam giác và AG = 12cm. Độ dài đoạn thẳng AM =?
A. 18cm.
B. 16cm.
C. 14cm.
D. 13cm.
M là trung điểm của BC nên AM là đường trung tuyến kẻ từ A của tam giác ABC
Mà G là trọng tâm của tam giác ABC
Cho tam giác ABC trọng tâm G. Bình phương độ dài đoạn thẳng GA bằng
A. b 2 + c 2 − a 2 3
B. 2 b 2 + 2 c 2 − a 2 4
C. 2 b 2 + 2 c 2 − a 2 12
D. 2 b 2 + 2 c 2 − a 2 9
Theo tính chất trọng tâm tam giác ta có: G A = 2 3 m a . Suy ra:
G A 2 = 2 3 m a 2 = 4 9 . 2 b 2 + 2 c 2 − a 2 4 = 2 b 2 + 2 c 2 − a 2 9
ĐÁP ÁN D
tam giác ABC đều cạnh a,dựng hình vuông BCMN.Gọi G là trọng tâm tam giác ABC.Tính theo a độ dài vectơ u=vectơ GA+vectơ GB+vectơ GM+vecto GN
\(\overrightarrow{u}=\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GM}+\overrightarrow{GN}=\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{CM}+\overrightarrow{GB}+\overrightarrow{BN}\)
\(=\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GB}+\overrightarrow{CM}+\overrightarrow{BN}=\overrightarrow{GB}+2\overrightarrow{BN}\)
G là trọng tâm \(\Rightarrow BG=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\)
\(\left|\overrightarrow{u}\right|=\left|\overrightarrow{GB}+2\overrightarrow{BN}\right|\Rightarrow\left|\overrightarrow{u}\right|^2=BG^2+4BN^2+4\overrightarrow{GB}.\overrightarrow{BN}\)
\(=\dfrac{a^2}{3}+4a^2+4.\dfrac{a\sqrt{3}}{3}.a.cos120^0=\dfrac{13-2\sqrt{3}}{3}a^2\)
\(\Rightarrow\left|\overrightarrow{u}\right|=\sqrt{\dfrac{13-2\sqrt{3}}{3}}.a\)
Cho tam giác ABC có AB = AC = 25cm, BC = 40cm, trung tuyến AM. Gọi G là trọng tâm của tam giác ABC. Khi đó độ dài đoạn thẳng GA = ... cm
Vẽ hình rồi giải chi tiết ra giùm mik nha
Cho tam giác ABC, là trọng tâm. Qua G vẽ đường thẳng // với cạnh AC, cắt cạnh AC, BC lần lượt ở D và E. Tính độ dài đoạn thẳng DE, biết chu vi tam giác ABC = 75 cm.
Cho tam giác ABC có D, E lần lượt là trung điểm của các cạnh BC, AB. Gọi Glaf trọng tâm của tam giác ABC. Trên tia AG lấy điểm M sao cho G là trung điểm của AM.
a) Chứng minh GD=DM và Tam giác BDM = Tam giác CDG
b) Tính độ dài BM theo độ dài đoạn thẳng CE
c) Chứng minh: 2AD< AB+AC
Cho tam giác ABC có góc A nhọn và AB = 3, AC=5, Sin A = 3/5. Gọi G là trọng tâm tam giác ABC và O là tâm đường tròn ngoại tiếp tam giác ABC
Tính độ dài đoạn thẳng OG
Cho tam giác ABC có BC = 5, AC = 6 và AB = 7. Gọi O là giao điểm ba đường phân giác, G là trọng tâm của tam giác.
Tính độ dài đoạn OG.